{"title":"利用特征选择和改进的 SE 块预测航空发动机剩余寿命","authors":"Hairui Wang, Shijie Xu, Guifu Zhu, Ya Li","doi":"10.1155/2024/6465566","DOIUrl":null,"url":null,"abstract":"Aeroengines use numerous sensors to detect equipment health and ensure proper operation. Currently, filtering useful sensor data and removing useless data is challenging in predicting the remaining useful life (RUL) of an aeroengine using deep learning. To reduce computational costs and improve prediction performance, we use random forest to evaluate the feature importance of sensor data. Based on the size of the feature corresponding to the Gini index, we select the appropriate sensor. This helps us to determine which sensor to use and ensures that the computational resources are not wasted on unnecessary sensors. Considering that the RUL of equipment changes in a progressively more complex manner as the equipment is used over time, we propose an improved squeeze and excitation block (SSE) and combine it with a convolutional neural network (CNN). By enhancing the feature selection ability of CNN through segmented squeeze and excitation block, the model can focus on important information within features to effectively improve prediction performance. We compared our experiments with other RUL experiments on the CMAPSS aeroengine dataset and then conducted ablation experiments to verify the critical role of the methods we used.","PeriodicalId":13748,"journal":{"name":"International Journal of Aerospace Engineering","volume":"5 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aeroengine Remaining Life Prediction Using Feature Selection and Improved SE Blocks\",\"authors\":\"Hairui Wang, Shijie Xu, Guifu Zhu, Ya Li\",\"doi\":\"10.1155/2024/6465566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aeroengines use numerous sensors to detect equipment health and ensure proper operation. Currently, filtering useful sensor data and removing useless data is challenging in predicting the remaining useful life (RUL) of an aeroengine using deep learning. To reduce computational costs and improve prediction performance, we use random forest to evaluate the feature importance of sensor data. Based on the size of the feature corresponding to the Gini index, we select the appropriate sensor. This helps us to determine which sensor to use and ensures that the computational resources are not wasted on unnecessary sensors. Considering that the RUL of equipment changes in a progressively more complex manner as the equipment is used over time, we propose an improved squeeze and excitation block (SSE) and combine it with a convolutional neural network (CNN). By enhancing the feature selection ability of CNN through segmented squeeze and excitation block, the model can focus on important information within features to effectively improve prediction performance. We compared our experiments with other RUL experiments on the CMAPSS aeroengine dataset and then conducted ablation experiments to verify the critical role of the methods we used.\",\"PeriodicalId\":13748,\"journal\":{\"name\":\"International Journal of Aerospace Engineering\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Aerospace Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/6465566\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Aerospace Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/6465566","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Aeroengine Remaining Life Prediction Using Feature Selection and Improved SE Blocks
Aeroengines use numerous sensors to detect equipment health and ensure proper operation. Currently, filtering useful sensor data and removing useless data is challenging in predicting the remaining useful life (RUL) of an aeroengine using deep learning. To reduce computational costs and improve prediction performance, we use random forest to evaluate the feature importance of sensor data. Based on the size of the feature corresponding to the Gini index, we select the appropriate sensor. This helps us to determine which sensor to use and ensures that the computational resources are not wasted on unnecessary sensors. Considering that the RUL of equipment changes in a progressively more complex manner as the equipment is used over time, we propose an improved squeeze and excitation block (SSE) and combine it with a convolutional neural network (CNN). By enhancing the feature selection ability of CNN through segmented squeeze and excitation block, the model can focus on important information within features to effectively improve prediction performance. We compared our experiments with other RUL experiments on the CMAPSS aeroengine dataset and then conducted ablation experiments to verify the critical role of the methods we used.
期刊介绍:
International Journal of Aerospace Engineering aims to serve the international aerospace engineering community through dissemination of scientific knowledge on practical engineering and design methodologies pertaining to aircraft and space vehicles.
Original unpublished manuscripts are solicited on all areas of aerospace engineering including but not limited to:
-Mechanics of materials and structures-
Aerodynamics and fluid mechanics-
Dynamics and control-
Aeroacoustics-
Aeroelasticity-
Propulsion and combustion-
Avionics and systems-
Flight simulation and mechanics-
Unmanned air vehicles (UAVs).
Review articles on any of the above topics are also welcome.