von Mises-Fisher 分布的新型抽样方法

IF 1.6 2区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS Statistics and Computing Pub Date : 2024-03-26 DOI:10.1007/s11222-024-10419-3
{"title":"von Mises-Fisher 分布的新型抽样方法","authors":"","doi":"10.1007/s11222-024-10419-3","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>The von Mises–Fisher distribution is a widely used probability model in directional statistics. An algorithm for generating pseudo-random vectors from this distribution was suggested by Wood (Commun Stat Simul Comput 23(1):157–164, 1994), which is based on a rejection sampling scheme. This paper proposes an alternative to this rejection sampling approach for drawing pseudo-random vectors from arbitrary von Mises–Fisher distributions. A useful mixture representation is derived, which is a mixture of beta distributions with mixing weights that follow a confluent hypergeometric distribution. A condensed table-lookup method is adopted for sampling from the confluent hypergeometric distribution. A theoretical analysis investigates the amount of computation required to construct the condensed lookup table. Through numerical experiments, we demonstrate that the proposed algorithm outperforms the rejection-based method when generating a large number of pseudo-random vectors from the same distribution.</p>","PeriodicalId":22058,"journal":{"name":"Statistics and Computing","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel sampling method for the von Mises–Fisher distribution\",\"authors\":\"\",\"doi\":\"10.1007/s11222-024-10419-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>The von Mises–Fisher distribution is a widely used probability model in directional statistics. An algorithm for generating pseudo-random vectors from this distribution was suggested by Wood (Commun Stat Simul Comput 23(1):157–164, 1994), which is based on a rejection sampling scheme. This paper proposes an alternative to this rejection sampling approach for drawing pseudo-random vectors from arbitrary von Mises–Fisher distributions. A useful mixture representation is derived, which is a mixture of beta distributions with mixing weights that follow a confluent hypergeometric distribution. A condensed table-lookup method is adopted for sampling from the confluent hypergeometric distribution. A theoretical analysis investigates the amount of computation required to construct the condensed lookup table. Through numerical experiments, we demonstrate that the proposed algorithm outperforms the rejection-based method when generating a large number of pseudo-random vectors from the same distribution.</p>\",\"PeriodicalId\":22058,\"journal\":{\"name\":\"Statistics and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics and Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11222-024-10419-3\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11222-024-10419-3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 von Mises-Fisher 分布是定向统计中广泛使用的概率模型。伍德(Commun Stat Simul Comput 23(1):157-164, 1994)提出了一种从该分布生成伪随机向量的算法,该算法基于拒绝抽样方案。本文提出了从任意 von Mises-Fisher 分布中抽取伪随机向量的拒绝抽样方法的替代方案。本文导出了一种有用的混合表示法,即混合权重遵循汇合超几何分布的贝塔分布的混合。从汇合超几何分布中采样时,采用了一种浓缩的查表方法。理论分析研究了构建浓缩查找表所需的计算量。通过数值实验,我们证明了当从同一分布生成大量伪随机向量时,所提出的算法优于基于拒绝的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Novel sampling method for the von Mises–Fisher distribution

Abstract

The von Mises–Fisher distribution is a widely used probability model in directional statistics. An algorithm for generating pseudo-random vectors from this distribution was suggested by Wood (Commun Stat Simul Comput 23(1):157–164, 1994), which is based on a rejection sampling scheme. This paper proposes an alternative to this rejection sampling approach for drawing pseudo-random vectors from arbitrary von Mises–Fisher distributions. A useful mixture representation is derived, which is a mixture of beta distributions with mixing weights that follow a confluent hypergeometric distribution. A condensed table-lookup method is adopted for sampling from the confluent hypergeometric distribution. A theoretical analysis investigates the amount of computation required to construct the condensed lookup table. Through numerical experiments, we demonstrate that the proposed algorithm outperforms the rejection-based method when generating a large number of pseudo-random vectors from the same distribution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistics and Computing
Statistics and Computing 数学-计算机:理论方法
CiteScore
3.20
自引率
4.50%
发文量
93
审稿时长
6-12 weeks
期刊介绍: Statistics and Computing is a bi-monthly refereed journal which publishes papers covering the range of the interface between the statistical and computing sciences. In particular, it addresses the use of statistical concepts in computing science, for example in machine learning, computer vision and data analytics, as well as the use of computers in data modelling, prediction and analysis. Specific topics which are covered include: techniques for evaluating analytically intractable problems such as bootstrap resampling, Markov chain Monte Carlo, sequential Monte Carlo, approximate Bayesian computation, search and optimization methods, stochastic simulation and Monte Carlo, graphics, computer environments, statistical approaches to software errors, information retrieval, machine learning, statistics of databases and database technology, huge data sets and big data analytics, computer algebra, graphical models, image processing, tomography, inverse problems and uncertainty quantification. In addition, the journal contains original research reports, authoritative review papers, discussed papers, and occasional special issues on particular topics or carrying proceedings of relevant conferences. Statistics and Computing also publishes book review and software review sections.
期刊最新文献
Accelerated failure time models with error-prone response and nonlinear covariates Sequential model identification with reversible jump ensemble data assimilation method Hidden Markov models for multivariate panel data Shrinkage for extreme partial least-squares Nonconvex Dantzig selector and its parallel computing algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1