高地和水田土壤有机物的生化组成和氧化状态不同

IF 2.8 3区 农林科学 Q3 ENVIRONMENTAL SCIENCES Journal of Soils and Sediments Pub Date : 2024-03-25 DOI:10.1007/s11368-024-03782-1
{"title":"高地和水田土壤有机物的生化组成和氧化状态不同","authors":"","doi":"10.1007/s11368-024-03782-1","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <span> <h3>Purpose</h3> <p>The chemistry of soil organic matter (SOM) is fundamental for sustainable and climate-smart agroecosystems. However, the differences in SOM chemistry between the upland and paddy soils developing under the same climatic and edaphic conditions are unclear.</p> </span> <span> <h3>Materials and methods</h3> <p>Py-GC/MS was applied to characterize the biochemical features of SOM in three physical size fractions: coarse particulate (&gt; 0.25 mm, cPOM), fine particulate (0.053–0.25 mm, fPOM), and mineral-associated OM (&lt; 0.053 mm, MAOM) of upland and paddy fields under long-term (&gt; 30 years) mineral and manure fertilizations.</p> </span> <span> <h3>Results and discussion</h3> <p>Paddy fields had higher contents of soil organic carbon (SOC) and total nitrogen (TN) mainly accumulated in MAOM fraction than uplands. These two soils had different molecular compositions of SOM: N-containing compounds including amino-N and heterocyclic-N compounds enriched in the uplands, whereas paddy had higher proportions of lipids and phenolics. The SOM composition was also dependent on particle size, especially in the uplands, where POM fractions had high contents of lignin and MAOM accumulated N-containing components. In contrast, POM in paddy accumulated polysaccharides, whereas MAOM was enriched with lipids. Particle size controlled the C oxidation state (C<sub>ox</sub>), and paddy soils had higher C<sub>ox</sub> than that of uplands, mainly in the MAOM fraction.</p> </span> <span> <h3>Conclusions</h3> <p>The molecular composition SOM was primarily regulated by land-use type, following by fraction size and fertilization regime, while the C<sub>ox</sub> was controlled by fraction size. The C<sub>ox</sub> needs more attention to understand the direction of formation of SOM fractions.</p> </span>","PeriodicalId":17139,"journal":{"name":"Journal of Soils and Sediments","volume":"1 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Different biochemical composition and oxidation state of soil organic matter between upland and paddy fields\",\"authors\":\"\",\"doi\":\"10.1007/s11368-024-03782-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <span> <h3>Purpose</h3> <p>The chemistry of soil organic matter (SOM) is fundamental for sustainable and climate-smart agroecosystems. However, the differences in SOM chemistry between the upland and paddy soils developing under the same climatic and edaphic conditions are unclear.</p> </span> <span> <h3>Materials and methods</h3> <p>Py-GC/MS was applied to characterize the biochemical features of SOM in three physical size fractions: coarse particulate (&gt; 0.25 mm, cPOM), fine particulate (0.053–0.25 mm, fPOM), and mineral-associated OM (&lt; 0.053 mm, MAOM) of upland and paddy fields under long-term (&gt; 30 years) mineral and manure fertilizations.</p> </span> <span> <h3>Results and discussion</h3> <p>Paddy fields had higher contents of soil organic carbon (SOC) and total nitrogen (TN) mainly accumulated in MAOM fraction than uplands. These two soils had different molecular compositions of SOM: N-containing compounds including amino-N and heterocyclic-N compounds enriched in the uplands, whereas paddy had higher proportions of lipids and phenolics. The SOM composition was also dependent on particle size, especially in the uplands, where POM fractions had high contents of lignin and MAOM accumulated N-containing components. In contrast, POM in paddy accumulated polysaccharides, whereas MAOM was enriched with lipids. Particle size controlled the C oxidation state (C<sub>ox</sub>), and paddy soils had higher C<sub>ox</sub> than that of uplands, mainly in the MAOM fraction.</p> </span> <span> <h3>Conclusions</h3> <p>The molecular composition SOM was primarily regulated by land-use type, following by fraction size and fertilization regime, while the C<sub>ox</sub> was controlled by fraction size. The C<sub>ox</sub> needs more attention to understand the direction of formation of SOM fractions.</p> </span>\",\"PeriodicalId\":17139,\"journal\":{\"name\":\"Journal of Soils and Sediments\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Soils and Sediments\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11368-024-03782-1\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Soils and Sediments","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11368-024-03782-1","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

摘要 目的 土壤有机质(SOM)的化学性质对可持续发展和气候智能型农业生态系统至关重要。然而,在相同的气候和土壤条件下,高地土壤和水稻田土壤的有机质化学差异尚不清楚。 材料与方法 应用 Py-GC/MS 分析了长期(30 年)施用矿物质肥料和粪肥的高地和水田中粗颗粒(0.25 毫米,cPOM)、细颗粒(0.053-0.25 毫米,fPOM)和矿物质相关 OM(0.053 毫米,MAOM)这三种物理粒度 SOM 的生化特征。 结果与讨论 与高地相比,水田的土壤有机碳(SOC)和全氮(TN)含量较高,主要积累在 MAOM 部分。这两种土壤的 SOM 分子组成不同:高地富含含氮化合物,包括氨基-氮和杂环-氮化合物,而水稻田的脂类和酚类比例较高。SOM 的组成还与颗粒大小有关,尤其是在高地,POM 部分的木质素含量较高,而 MAOM 则含有较多的含 N 成分。相比之下,水稻中的 POM 含有多糖,而 MAOM 则富含脂类。粒径控制着 C 氧化态(Cox),水稻土的 Cox 值高于高地,主要体现在 MAOM 部分。 结论 SOM 的分子组成主要受土地利用类型的影响,其次是颗粒大小和施肥制度,而 Cox 则受颗粒大小的控制。要了解 SOM 各组分的形成方向,需要对 Cox 给予更多关注。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Different biochemical composition and oxidation state of soil organic matter between upland and paddy fields

Abstract

Purpose

The chemistry of soil organic matter (SOM) is fundamental for sustainable and climate-smart agroecosystems. However, the differences in SOM chemistry between the upland and paddy soils developing under the same climatic and edaphic conditions are unclear.

Materials and methods

Py-GC/MS was applied to characterize the biochemical features of SOM in three physical size fractions: coarse particulate (> 0.25 mm, cPOM), fine particulate (0.053–0.25 mm, fPOM), and mineral-associated OM (< 0.053 mm, MAOM) of upland and paddy fields under long-term (> 30 years) mineral and manure fertilizations.

Results and discussion

Paddy fields had higher contents of soil organic carbon (SOC) and total nitrogen (TN) mainly accumulated in MAOM fraction than uplands. These two soils had different molecular compositions of SOM: N-containing compounds including amino-N and heterocyclic-N compounds enriched in the uplands, whereas paddy had higher proportions of lipids and phenolics. The SOM composition was also dependent on particle size, especially in the uplands, where POM fractions had high contents of lignin and MAOM accumulated N-containing components. In contrast, POM in paddy accumulated polysaccharides, whereas MAOM was enriched with lipids. Particle size controlled the C oxidation state (Cox), and paddy soils had higher Cox than that of uplands, mainly in the MAOM fraction.

Conclusions

The molecular composition SOM was primarily regulated by land-use type, following by fraction size and fertilization regime, while the Cox was controlled by fraction size. The Cox needs more attention to understand the direction of formation of SOM fractions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Soils and Sediments
Journal of Soils and Sediments 环境科学-土壤科学
CiteScore
7.00
自引率
5.60%
发文量
256
审稿时长
3.5 months
期刊介绍: The Journal of Soils and Sediments (JSS) is devoted to soils and sediments; it deals with contaminated, intact and disturbed soils and sediments. JSS explores both the common aspects and the differences between these two environmental compartments. Inter-linkages at the catchment scale and with the Earth’s system (inter-compartment) are an important topic in JSS. The range of research coverage includes the effects of disturbances and contamination; research, strategies and technologies for prediction, prevention, and protection; identification and characterization; treatment, remediation and reuse; risk assessment and management; creation and implementation of quality standards; international regulation and legislation.
期刊最新文献
Enhancing pyromorphite formation through hydroxyapatite application in lead-contaminated, water-unsaturated soils: influence of low percolation velocity and high soil porosity Effect of peanut straw mulching on the soil nitrogen change and functional genes in the Camellia oleifera intercropping system Microbial metabolism strengths carbon sequestration and crop yield in upland red soil after long-term ex situ incorporation of straw “Once upon a time… a beach sand grain”: a bed-time story and scientific outreach activity for young children to increase sediment literacy Desalination of dredged sediments for beneficial use: a case of study for raising agricultural peatlands
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1