爆炸电磁辐射能量分析方法

IF 1.7 4区 工程技术 Q3 CHEMISTRY, APPLIED Propellants, Explosives, Pyrotechnics Pub Date : 2024-03-27 DOI:10.1002/prep.202300276
Yuanbo Cui, Jian Jiang
{"title":"爆炸电磁辐射能量分析方法","authors":"Yuanbo Cui, Jian Jiang","doi":"10.1002/prep.202300276","DOIUrl":null,"url":null,"abstract":"The energy of electromagnetic radiation from explosions is coupled to electronic equipment circuits, disrupting the initiation sequence or causing failure in an increasing number of cases, which seriously affects the stability of weapon systems. There is a significant difference between the characteristics of the explosive electromagnetic radiation signals and modulated electromagnetic signals. The electric field intensity and signal power cannot directly represent the magnitude of the explosive electromagnetic radiation energy, and traditional electromagnetic signal analysis methods are unsuitable for explosion electromagnetic signal analysis. To solve this problem, the mechanism of explosive electromagnetic radiation was first analyzed. Through verification experiments of the explosion electromagnetic intensity and temperature, it was concluded that there is a strong correlation between the explosion plasma temperature and electromagnetic intensity. The temperature of the explosive plasma is derived based on the measured surface temperature of the explosive fireball, a functional relationship is established between the energy of the explosive plasma and the temperature of the plasma, and plasma energy is introduced as a parameter for electric field intensity correction. The interference signal analysis method based on eye diagram is used to calibrate the electromagnetic radiation damage ability, achieving quantitative analysis of the interference degree of electromagnetic radiation energy on the signal, and providing a new approach for the analysis of explosive electromagnetic radiation energy.","PeriodicalId":20800,"journal":{"name":"Propellants, Explosives, Pyrotechnics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis method of explosive electromagnetic radiation energy\",\"authors\":\"Yuanbo Cui, Jian Jiang\",\"doi\":\"10.1002/prep.202300276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The energy of electromagnetic radiation from explosions is coupled to electronic equipment circuits, disrupting the initiation sequence or causing failure in an increasing number of cases, which seriously affects the stability of weapon systems. There is a significant difference between the characteristics of the explosive electromagnetic radiation signals and modulated electromagnetic signals. The electric field intensity and signal power cannot directly represent the magnitude of the explosive electromagnetic radiation energy, and traditional electromagnetic signal analysis methods are unsuitable for explosion electromagnetic signal analysis. To solve this problem, the mechanism of explosive electromagnetic radiation was first analyzed. Through verification experiments of the explosion electromagnetic intensity and temperature, it was concluded that there is a strong correlation between the explosion plasma temperature and electromagnetic intensity. The temperature of the explosive plasma is derived based on the measured surface temperature of the explosive fireball, a functional relationship is established between the energy of the explosive plasma and the temperature of the plasma, and plasma energy is introduced as a parameter for electric field intensity correction. The interference signal analysis method based on eye diagram is used to calibrate the electromagnetic radiation damage ability, achieving quantitative analysis of the interference degree of electromagnetic radiation energy on the signal, and providing a new approach for the analysis of explosive electromagnetic radiation energy.\",\"PeriodicalId\":20800,\"journal\":{\"name\":\"Propellants, Explosives, Pyrotechnics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Propellants, Explosives, Pyrotechnics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/prep.202300276\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Propellants, Explosives, Pyrotechnics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/prep.202300276","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

爆炸产生的电磁辐射能量与电子设备电路耦合,破坏启动顺序或导致故障的情况越来越多,严重影响武器系统的稳定性。爆炸电磁辐射信号的特性与调制电磁信号有很大区别。电场强度和信号功率不能直接代表爆炸电磁辐射能量的大小,传统的电磁信号分析方法不适合爆炸电磁信号分析。为解决这一问题,首先分析了爆炸电磁辐射的机理。通过对爆炸电磁强度和温度的验证实验,得出爆炸等离子体温度与电磁强度之间存在很强的相关性。根据测得的爆炸火球表面温度推导出爆炸等离子体的温度,建立了爆炸等离子体能量与等离子体温度之间的函数关系,并引入等离子体能量作为电场强度修正的参数。利用基于眼图的干扰信号分析方法对电磁辐射损伤能力进行标定,实现了电磁辐射能量对信号干扰程度的定量分析,为爆炸电磁辐射能量分析提供了一种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis method of explosive electromagnetic radiation energy
The energy of electromagnetic radiation from explosions is coupled to electronic equipment circuits, disrupting the initiation sequence or causing failure in an increasing number of cases, which seriously affects the stability of weapon systems. There is a significant difference between the characteristics of the explosive electromagnetic radiation signals and modulated electromagnetic signals. The electric field intensity and signal power cannot directly represent the magnitude of the explosive electromagnetic radiation energy, and traditional electromagnetic signal analysis methods are unsuitable for explosion electromagnetic signal analysis. To solve this problem, the mechanism of explosive electromagnetic radiation was first analyzed. Through verification experiments of the explosion electromagnetic intensity and temperature, it was concluded that there is a strong correlation between the explosion plasma temperature and electromagnetic intensity. The temperature of the explosive plasma is derived based on the measured surface temperature of the explosive fireball, a functional relationship is established between the energy of the explosive plasma and the temperature of the plasma, and plasma energy is introduced as a parameter for electric field intensity correction. The interference signal analysis method based on eye diagram is used to calibrate the electromagnetic radiation damage ability, achieving quantitative analysis of the interference degree of electromagnetic radiation energy on the signal, and providing a new approach for the analysis of explosive electromagnetic radiation energy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Propellants, Explosives, Pyrotechnics
Propellants, Explosives, Pyrotechnics 工程技术-工程:化工
CiteScore
4.20
自引率
16.70%
发文量
235
审稿时长
2.7 months
期刊介绍: Propellants, Explosives, Pyrotechnics (PEP) is an international, peer-reviewed journal containing Full Papers, Short Communications, critical Reviews, as well as details of forthcoming meetings and book reviews concerned with the research, development and production in relation to propellants, explosives, and pyrotechnics for all applications. Being the official journal of the International Pyrotechnics Society, PEP is a vital medium and the state-of-the-art forum for the exchange of science and technology in energetic materials. PEP is published 12 times a year. PEP is devoted to advancing the science, technology and engineering elements in the storage and manipulation of chemical energy, specifically in propellants, explosives and pyrotechnics. Articles should provide scientific context, articulate impact, and be generally applicable to the energetic materials and wider scientific community. PEP is not a defense journal and does not feature the weaponization of materials and related systems or include information that would aid in the development or utilization of improvised explosive systems, e.g., synthesis routes to terrorist explosives.
期刊最新文献
Forthcoming Meetings: 9/2024 Contents: Prop., Explos., Pyrotech. 9/2024 Wiley PEP Speaker Award 2024 Cover Picture: (Prop., Explos., Pyrotech. 9/2024) Future Articles: Prop., Explos., Pyrotech. 9/2024
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1