{"title":"基于温度的图示指数与苯碳氢化合物总 π 电子能相关性的比较分析","authors":"Sakander Hayat, Jia-Bao Liu","doi":"10.1142/s021797922550047x","DOIUrl":null,"url":null,"abstract":"<p>In a graph <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>G</mi><mo>=</mo><mo stretchy=\"false\">(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo stretchy=\"false\">)</mo></math></span><span></span>, the temperature <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>T</mi></mrow><mrow><mi>x</mi></mrow></msub></math></span><span></span> of a vertex <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>x</mi><mo>∈</mo><mi>V</mi></math></span><span></span> is defined as <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>T</mi></mrow><mrow><mi>x</mi></mrow></msub><mo>=</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>x</mi></mrow></msub><mo stretchy=\"false\">/</mo><mi>n</mi><mo>−</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>x</mi></mrow></msub></math></span><span></span>, where <i>n</i> is the order of <i>G</i> and <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>d</mi></mrow><mrow><mi>x</mi></mrow></msub></math></span><span></span> is the valency/degree of <i>x</i>. A topological/graphical index <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">GI</mtext></mstyle></math></span><span></span> is a map <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">GI</mtext></mstyle><mo>:</mo><mo>∑</mo><mo>→</mo><mi>ℝ</mi></math></span><span></span>, where ∑ (respectively, <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>ℝ</mi></math></span><span></span>) is the set of simple connected graphs (respectively, real numbers). Graphical indices are employed in quantitative structure-property relationship (QSPR) modeling to predict physicochemical/thermodynamic/biological characteristics of a compound. A temperature-based graphical index of a chemical graph <i>G</i> is defined as <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mstyle><mtext mathvariant=\"normal\">GI</mtext></mstyle></mrow><mrow><mi>T</mi></mrow></msub><mo>:</mo><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mstyle><mtext mathvariant=\"normal\">edges</mtext></mstyle></mrow></msub><mi>f</mi><mo stretchy=\"false\">(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>x</mi></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>y</mi></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span>, where <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi><mo stretchy=\"false\">(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>x</mi></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>y</mi></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span> is a symmetric 2-variable map. In this paper, we introduce two new novel temperature-based indices named as the reduced reciprocal product-connectivity temperature (<span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">RRPT</mtext></mstyle></math></span><span></span>) index and the geometric-arithmetic temperature (<span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">GAT</mtext></mstyle></math></span><span></span>) index. The predictive potential of these indices has been investigated by employing them in structure-property modeling of the total <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><mi>π</mi></math></span><span></span>-electronic energy <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>E</mi></mrow><mrow><mi>π</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>β</mi><mo stretchy=\"false\">)</mo></math></span><span></span> of benzenoid hydrocarbons. In order to validate the statistical inference, the lower 30 BHs have been opted as test molecules as their experimental data for <span><math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>E</mi></mrow><mrow><mi>π</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>β</mi><mo stretchy=\"false\">)</mo></math></span><span></span> is also publicly available. First, we employ a computer-based computational method to compute temperature indices of 30 lower BHs. Certain QPSR models are proposed by utilizing the experimental data of <span><math altimg=\"eq-00017.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>E</mi></mrow><mrow><mi>π</mi></mrow></msub></math></span><span></span> for the BHs. Our statistical analysis suggests that the most efficient regression models are, in fact, linear. Our statistical analysis asserts that both <span><math altimg=\"eq-00018.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">RRPT</mtext></mstyle></math></span><span></span> and <span><math altimg=\"eq-00019.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">GAT</mtext></mstyle></math></span><span></span> outperformed all the existing temperature indices for correlating <span><math altimg=\"eq-00020.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>E</mi></mrow><mrow><mi>π</mi></mrow></msub></math></span><span></span> for the BHs. The results suggest their further employability in QSPR modeling. Importantly, our research contributes toward countering proliferation of graphical indices.</p>","PeriodicalId":14108,"journal":{"name":"International Journal of Modern Physics B","volume":"46 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative analysis of temperature-based graphical indices for correlating the total π-electron energy of benzenoid hydrocarbons\",\"authors\":\"Sakander Hayat, Jia-Bao Liu\",\"doi\":\"10.1142/s021797922550047x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In a graph <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>G</mi><mo>=</mo><mo stretchy=\\\"false\\\">(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>, the temperature <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>T</mi></mrow><mrow><mi>x</mi></mrow></msub></math></span><span></span> of a vertex <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>x</mi><mo>∈</mo><mi>V</mi></math></span><span></span> is defined as <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>T</mi></mrow><mrow><mi>x</mi></mrow></msub><mo>=</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>x</mi></mrow></msub><mo stretchy=\\\"false\\\">/</mo><mi>n</mi><mo>−</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>x</mi></mrow></msub></math></span><span></span>, where <i>n</i> is the order of <i>G</i> and <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>d</mi></mrow><mrow><mi>x</mi></mrow></msub></math></span><span></span> is the valency/degree of <i>x</i>. A topological/graphical index <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mstyle><mtext mathvariant=\\\"normal\\\">GI</mtext></mstyle></math></span><span></span> is a map <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mstyle><mtext mathvariant=\\\"normal\\\">GI</mtext></mstyle><mo>:</mo><mo>∑</mo><mo>→</mo><mi>ℝ</mi></math></span><span></span>, where ∑ (respectively, <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>ℝ</mi></math></span><span></span>) is the set of simple connected graphs (respectively, real numbers). Graphical indices are employed in quantitative structure-property relationship (QSPR) modeling to predict physicochemical/thermodynamic/biological characteristics of a compound. A temperature-based graphical index of a chemical graph <i>G</i> is defined as <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mstyle><mtext mathvariant=\\\"normal\\\">GI</mtext></mstyle></mrow><mrow><mi>T</mi></mrow></msub><mo>:</mo><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mstyle><mtext mathvariant=\\\"normal\\\">edges</mtext></mstyle></mrow></msub><mi>f</mi><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>x</mi></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>y</mi></mrow></msub><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>, where <span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>f</mi><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>x</mi></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>y</mi></mrow></msub><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> is a symmetric 2-variable map. In this paper, we introduce two new novel temperature-based indices named as the reduced reciprocal product-connectivity temperature (<span><math altimg=\\\"eq-00012.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mstyle><mtext mathvariant=\\\"normal\\\">RRPT</mtext></mstyle></math></span><span></span>) index and the geometric-arithmetic temperature (<span><math altimg=\\\"eq-00013.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mstyle><mtext mathvariant=\\\"normal\\\">GAT</mtext></mstyle></math></span><span></span>) index. The predictive potential of these indices has been investigated by employing them in structure-property modeling of the total <span><math altimg=\\\"eq-00014.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>π</mi></math></span><span></span>-electronic energy <span><math altimg=\\\"eq-00015.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>E</mi></mrow><mrow><mi>π</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>β</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> of benzenoid hydrocarbons. In order to validate the statistical inference, the lower 30 BHs have been opted as test molecules as their experimental data for <span><math altimg=\\\"eq-00016.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>E</mi></mrow><mrow><mi>π</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>β</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> is also publicly available. First, we employ a computer-based computational method to compute temperature indices of 30 lower BHs. Certain QPSR models are proposed by utilizing the experimental data of <span><math altimg=\\\"eq-00017.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>E</mi></mrow><mrow><mi>π</mi></mrow></msub></math></span><span></span> for the BHs. Our statistical analysis suggests that the most efficient regression models are, in fact, linear. Our statistical analysis asserts that both <span><math altimg=\\\"eq-00018.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mstyle><mtext mathvariant=\\\"normal\\\">RRPT</mtext></mstyle></math></span><span></span> and <span><math altimg=\\\"eq-00019.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mstyle><mtext mathvariant=\\\"normal\\\">GAT</mtext></mstyle></math></span><span></span> outperformed all the existing temperature indices for correlating <span><math altimg=\\\"eq-00020.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>E</mi></mrow><mrow><mi>π</mi></mrow></msub></math></span><span></span> for the BHs. The results suggest their further employability in QSPR modeling. Importantly, our research contributes toward countering proliferation of graphical indices.</p>\",\"PeriodicalId\":14108,\"journal\":{\"name\":\"International Journal of Modern Physics B\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Modern Physics B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s021797922550047x\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s021797922550047x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
在图 G=(V,E)中,顶点 xx∈V 的温度 Tx 定义为 Tx=dx/n-dx,其中 n 是 G 的阶数,dx 是 x 的价/度。拓扑/图形指数 GI 是一个映射 GI:∑→ℝ,其中 ∑(分别为ℝ)是简单连通图集(分别为实数)。在定量结构-性质关系(QSPR)建模中使用图形指数来预测化合物的物理化学/热力学/生物学特性。化学图 G 的基于温度的图形指数定义为 GIT:=∑edgesf(Tx,Ty),其中 f(Tx,Ty) 是一个对称的 2 变量映射。在本文中,我们引入了两个新的基于温度的指数,它们分别被命名为还原互积连接温度(RRPT)指数和几何算术温度(GAT)指数。通过将这些指数用于苯类烃类总π电子能 Eπ(β) 的结构-性质建模,研究了它们的预测潜力。为了验证统计推论,我们选择了较低的 30 种 BH 作为测试分子,因为它们的 Eπ(β)实验数据也是公开的。首先,我们采用基于计算机的计算方法来计算 30 个低等 BH 的温度指数。利用这些黑洞的 Eπ 实验数据,我们提出了一些 QPSR 模型。我们的统计分析表明,最有效的回归模型实际上是线性的。我们的统计分析表明,RRPT 和 GAT 在关联黑体 Eπ 方面的表现优于现有的所有温度指数。这些结果表明,它们可进一步用于 QSPR 建模。重要的是,我们的研究有助于抵制图形指数的扩散。
Comparative analysis of temperature-based graphical indices for correlating the total π-electron energy of benzenoid hydrocarbons
In a graph , the temperature of a vertex is defined as , where n is the order of G and is the valency/degree of x. A topological/graphical index is a map , where ∑ (respectively, ) is the set of simple connected graphs (respectively, real numbers). Graphical indices are employed in quantitative structure-property relationship (QSPR) modeling to predict physicochemical/thermodynamic/biological characteristics of a compound. A temperature-based graphical index of a chemical graph G is defined as , where is a symmetric 2-variable map. In this paper, we introduce two new novel temperature-based indices named as the reduced reciprocal product-connectivity temperature () index and the geometric-arithmetic temperature () index. The predictive potential of these indices has been investigated by employing them in structure-property modeling of the total -electronic energy of benzenoid hydrocarbons. In order to validate the statistical inference, the lower 30 BHs have been opted as test molecules as their experimental data for is also publicly available. First, we employ a computer-based computational method to compute temperature indices of 30 lower BHs. Certain QPSR models are proposed by utilizing the experimental data of for the BHs. Our statistical analysis suggests that the most efficient regression models are, in fact, linear. Our statistical analysis asserts that both and outperformed all the existing temperature indices for correlating for the BHs. The results suggest their further employability in QSPR modeling. Importantly, our research contributes toward countering proliferation of graphical indices.
期刊介绍:
Launched in 1987, the International Journal of Modern Physics B covers the most important aspects and the latest developments in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low dimensional materials. One unique feature of this journal is its review section which contains articles with permanent research value besides the state-of-the-art research work in the relevant subject areas.