Christopher Scheib, Raymond Newswanger, Joshua Cysyk, Karl Bohnenberger, Branka Lukic, Lichong Xu, Eric Yeager, Kirby Bletcher, Patrick Leibich, Quandashia Jackson, Heidi Flory, Mindy Tillinger, William Weiss, Gerson Rosenberg, Choon-Sik Jhun
{"title":"开发 PSU 儿童泵。","authors":"Christopher Scheib, Raymond Newswanger, Joshua Cysyk, Karl Bohnenberger, Branka Lukic, Lichong Xu, Eric Yeager, Kirby Bletcher, Patrick Leibich, Quandashia Jackson, Heidi Flory, Mindy Tillinger, William Weiss, Gerson Rosenberg, Choon-Sik Jhun","doi":"10.1097/MAT.0000000000002202","DOIUrl":null,"url":null,"abstract":"<p><p>The Pennsylvania State University (PSU) Child Pump, a centrifugal continuous-flow ventricular assist device (cf-VAD), is being developed as a suitable long-term implantable device for pediatric heart failure patients between 10 and 35 kg, body surface area (BSA) of 0.5-1.2 m 2 , 1-11 years of age, and requiring a mean cardiac output of 1.0-3.5 L/min. In-vitro hydraulic and hemodynamic performances were evaluated on a custom mock circulatory loop with ovine blood. Normalized index of hemolysis (NIH) was evaluated under four conditions: 1) 8,300 rpm, 3.5 L/min, Δ P = 60 mm Hg, 2) 8,150 rpm, 5.1 L/min, Δ P = 20 mm Hg, 3) 8,400 rpm, 3.2 L/min, Δ P = 70 mm Hg, and 4) 9,850 rpm, 5.0 L/min, Δ P = 80 mm Hg, resulting in normalized index of hemolysis = 0.027 ± 0.013, 0.015 ± 0.006, 0.016 ± 0.008, and 0.026 ± 0.011 mg/dl, respectively. A mock fit study was conducted using a three-dimensional printed model of a 19 kg patient's thoracic cavity to compare the size of the PSU Child Pump to the HeartMate3 and the HVAD. Results indicate the PSU Child Pump will be a safer, appropriately sized device capable of providing the given patient cohort proper support while minimizing the risks of blood trauma as they wait for a transplant.</p>","PeriodicalId":8844,"journal":{"name":"ASAIO Journal","volume":" ","pages":"892-897"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of the PSU Child Pump.\",\"authors\":\"Christopher Scheib, Raymond Newswanger, Joshua Cysyk, Karl Bohnenberger, Branka Lukic, Lichong Xu, Eric Yeager, Kirby Bletcher, Patrick Leibich, Quandashia Jackson, Heidi Flory, Mindy Tillinger, William Weiss, Gerson Rosenberg, Choon-Sik Jhun\",\"doi\":\"10.1097/MAT.0000000000002202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Pennsylvania State University (PSU) Child Pump, a centrifugal continuous-flow ventricular assist device (cf-VAD), is being developed as a suitable long-term implantable device for pediatric heart failure patients between 10 and 35 kg, body surface area (BSA) of 0.5-1.2 m 2 , 1-11 years of age, and requiring a mean cardiac output of 1.0-3.5 L/min. In-vitro hydraulic and hemodynamic performances were evaluated on a custom mock circulatory loop with ovine blood. Normalized index of hemolysis (NIH) was evaluated under four conditions: 1) 8,300 rpm, 3.5 L/min, Δ P = 60 mm Hg, 2) 8,150 rpm, 5.1 L/min, Δ P = 20 mm Hg, 3) 8,400 rpm, 3.2 L/min, Δ P = 70 mm Hg, and 4) 9,850 rpm, 5.0 L/min, Δ P = 80 mm Hg, resulting in normalized index of hemolysis = 0.027 ± 0.013, 0.015 ± 0.006, 0.016 ± 0.008, and 0.026 ± 0.011 mg/dl, respectively. A mock fit study was conducted using a three-dimensional printed model of a 19 kg patient's thoracic cavity to compare the size of the PSU Child Pump to the HeartMate3 and the HVAD. Results indicate the PSU Child Pump will be a safer, appropriately sized device capable of providing the given patient cohort proper support while minimizing the risks of blood trauma as they wait for a transplant.</p>\",\"PeriodicalId\":8844,\"journal\":{\"name\":\"ASAIO Journal\",\"volume\":\" \",\"pages\":\"892-897\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASAIO Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1097/MAT.0000000000002202\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASAIO Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1097/MAT.0000000000002202","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
The Pennsylvania State University (PSU) Child Pump, a centrifugal continuous-flow ventricular assist device (cf-VAD), is being developed as a suitable long-term implantable device for pediatric heart failure patients between 10 and 35 kg, body surface area (BSA) of 0.5-1.2 m 2 , 1-11 years of age, and requiring a mean cardiac output of 1.0-3.5 L/min. In-vitro hydraulic and hemodynamic performances were evaluated on a custom mock circulatory loop with ovine blood. Normalized index of hemolysis (NIH) was evaluated under four conditions: 1) 8,300 rpm, 3.5 L/min, Δ P = 60 mm Hg, 2) 8,150 rpm, 5.1 L/min, Δ P = 20 mm Hg, 3) 8,400 rpm, 3.2 L/min, Δ P = 70 mm Hg, and 4) 9,850 rpm, 5.0 L/min, Δ P = 80 mm Hg, resulting in normalized index of hemolysis = 0.027 ± 0.013, 0.015 ± 0.006, 0.016 ± 0.008, and 0.026 ± 0.011 mg/dl, respectively. A mock fit study was conducted using a three-dimensional printed model of a 19 kg patient's thoracic cavity to compare the size of the PSU Child Pump to the HeartMate3 and the HVAD. Results indicate the PSU Child Pump will be a safer, appropriately sized device capable of providing the given patient cohort proper support while minimizing the risks of blood trauma as they wait for a transplant.
期刊介绍:
ASAIO Journal is in the forefront of artificial organ research and development. On the cutting edge of innovative technology, it features peer-reviewed articles of the highest quality that describe research, development, the most recent advances in the design of artificial organ devices and findings from initial testing. Bimonthly, the ASAIO Journal features state-of-the-art investigations, laboratory and clinical trials, and discussions and opinions from experts around the world.
The official publication of the American Society for Artificial Internal Organs.