下载PDF
{"title":"通过现场 CT 分数血流储备评估接受经导管主动脉瓣置换术患者的冠状动脉疾病。","authors":"Alexandra Steyer, Valentina O Puntmann, Eike Nagel, David M Leistner, Vitali Koch, Mariuca Vasa-Nicotera, Parveen Kumar, Christian Booz, Thomas J Vogl, Silvia Mas-Peiro, Simon S Martin","doi":"10.1148/ryct.230096","DOIUrl":null,"url":null,"abstract":"<p><p>Purpose To examine the clinical feasibility of workstation-based CT fractional flow reserve (CT-FFR) for coronary artery disease (CAD) evaluation during preprocedural planning in patients undergoing transcatheter aortic valve replacement (TAVR). Materials and Methods In this retrospective single-center study, 434 patients scheduled for TAVR between 2018 and 2020 were screened for study inclusion; a relevant proportion of patients (35.0% [152 of 434]) was not suitable for evaluation due to insufficient imaging properties. A total of 112 patients (mean age, 82.1 years ± 6.7 [SD]; 58 [52%] men) were included in the study. Invasive angiography findings, coronary CT angiography results, and Agatston score were acquired and compared with on-site CT-FFR computation for evaluation of CAD and prediction of major adverse cardiovascular events (MACE) within a 24-month follow-up. Results Hemodynamic relevant CAD, as suggested by CT-FFR of 0.80 or less, was found in 41 of 70 (59%) patients with stenosis of 50% or more. MACE occurred in 23 of 112 (20.5%) patients, from which 14 of 23 had stenoses with CT-FFR of 0.80 or less (hazard ratio [HR], 3.33; 95% CI: 1.56, 7.10; <i>P</i> = .002). CT-FFR remained a significant predictor of MACE after inclusion in a multivariable model with relevant covariables (HR, 2.89; 95% CI: 1.22, 6.86; <i>P</i> = .02). An Agatston score of 1000 Agatston units or more (HR, 2.25; 95% CI: 0.98, 5.21; <i>P</i> = .06) and stenoses of 50% or more determined via invasive angiography (HR, 0.94; 95% CI: 0.41, 2.17; <i>P</i> = .88) were not significant predictors of MACE. Conclusion Compared with conventional CAD markers, CT-FFR better predicted adverse outcomes after TAVR. A relevant portion of the screened cohort, however, was not suitable for CT-based CAD evaluation. <b>Keywords:</b> CT, Transcatheter Aortic Valve Implantation/Replacement (TAVI/TAVR), Cardiac, Coronary Arteries, Outcomes Analysis © RSNA, 2024 See also the commentary by Weir-McCall and Pugliese in this issue.</p>","PeriodicalId":21168,"journal":{"name":"Radiology. Cardiothoracic imaging","volume":"6 2","pages":"e230096"},"PeriodicalIF":3.8000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11056750/pdf/","citationCount":"0","resultStr":"{\"title\":\"Coronary Artery Disease Assessment via On-Site CT Fractional Flow Reserve in Patients Undergoing Transcatheter Aortic Valve Replacement.\",\"authors\":\"Alexandra Steyer, Valentina O Puntmann, Eike Nagel, David M Leistner, Vitali Koch, Mariuca Vasa-Nicotera, Parveen Kumar, Christian Booz, Thomas J Vogl, Silvia Mas-Peiro, Simon S Martin\",\"doi\":\"10.1148/ryct.230096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Purpose To examine the clinical feasibility of workstation-based CT fractional flow reserve (CT-FFR) for coronary artery disease (CAD) evaluation during preprocedural planning in patients undergoing transcatheter aortic valve replacement (TAVR). Materials and Methods In this retrospective single-center study, 434 patients scheduled for TAVR between 2018 and 2020 were screened for study inclusion; a relevant proportion of patients (35.0% [152 of 434]) was not suitable for evaluation due to insufficient imaging properties. A total of 112 patients (mean age, 82.1 years ± 6.7 [SD]; 58 [52%] men) were included in the study. Invasive angiography findings, coronary CT angiography results, and Agatston score were acquired and compared with on-site CT-FFR computation for evaluation of CAD and prediction of major adverse cardiovascular events (MACE) within a 24-month follow-up. Results Hemodynamic relevant CAD, as suggested by CT-FFR of 0.80 or less, was found in 41 of 70 (59%) patients with stenosis of 50% or more. MACE occurred in 23 of 112 (20.5%) patients, from which 14 of 23 had stenoses with CT-FFR of 0.80 or less (hazard ratio [HR], 3.33; 95% CI: 1.56, 7.10; <i>P</i> = .002). CT-FFR remained a significant predictor of MACE after inclusion in a multivariable model with relevant covariables (HR, 2.89; 95% CI: 1.22, 6.86; <i>P</i> = .02). An Agatston score of 1000 Agatston units or more (HR, 2.25; 95% CI: 0.98, 5.21; <i>P</i> = .06) and stenoses of 50% or more determined via invasive angiography (HR, 0.94; 95% CI: 0.41, 2.17; <i>P</i> = .88) were not significant predictors of MACE. Conclusion Compared with conventional CAD markers, CT-FFR better predicted adverse outcomes after TAVR. A relevant portion of the screened cohort, however, was not suitable for CT-based CAD evaluation. <b>Keywords:</b> CT, Transcatheter Aortic Valve Implantation/Replacement (TAVI/TAVR), Cardiac, Coronary Arteries, Outcomes Analysis © RSNA, 2024 See also the commentary by Weir-McCall and Pugliese in this issue.</p>\",\"PeriodicalId\":21168,\"journal\":{\"name\":\"Radiology. Cardiothoracic imaging\",\"volume\":\"6 2\",\"pages\":\"e230096\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11056750/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiology. Cardiothoracic imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1148/ryct.230096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology. Cardiothoracic imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1148/ryct.230096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
引用
批量引用