化疗对脂肪组织重塑的影响:参与组织损耗的分子角色。

IF 3.3 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochimie Pub Date : 2024-03-26 DOI:10.1016/j.biochi.2024.03.016
Samuel Barbosa , Mafalda Barbosa Pedrosa , Rita Ferreira , Daniel Moreira-Gonçalves , Lúcio Lara Santos
{"title":"化疗对脂肪组织重塑的影响:参与组织损耗的分子角色。","authors":"Samuel Barbosa ,&nbsp;Mafalda Barbosa Pedrosa ,&nbsp;Rita Ferreira ,&nbsp;Daniel Moreira-Gonçalves ,&nbsp;Lúcio Lara Santos","doi":"10.1016/j.biochi.2024.03.016","DOIUrl":null,"url":null,"abstract":"<div><p>The depletion of visceral and subcutaneous adipose tissue (AT) during chemotherapy significantly correlates with diminished overall survival and progression-free survival. Despite its clinical significance, the intricate molecular mechanisms governing this AT loss and its chemotherapy-triggered initiation remain poorly understood. Notably, the evaluation of AT remodeling in most clinical trials has predominantly relied on computerized tomography scans or bioimpedance, with molecular studies often conducted using animal or in vitro models. To address this knowledge gap, a comprehensive narrative review was conducted. The findings underscore that chemotherapy serves as a key factor in inducing AT loss, exacerbating cachexia, a paraneoplastic syndrome that significantly compromises patient quality of life and survival. The mechanism driving AT loss appears intricately linked to alterations in AT metabolic remodeling, marked by heightened lipolysis and fatty acid oxidation, coupled with diminished lipogenesis. However, adipocyte stem cells' lost ability to divide due to chemotherapy also appears to be at the root of the loss of AT. Notably, chemotherapy seems to deactivate the mitochondrial antioxidant system by reducing key regulatory enzymes responsible for neutralizing reactive oxygen species (ROS), thereby impeding lipogenesis. Despite FDG-PET evidence of AT browning, no molecular evidence of thermogenesis was reported. Prospective investigations unraveling the molecular mechanisms modulated in AT by chemotherapy, along with therapeutic strategies aimed at preventing AT loss, promise to refine treatment paradigms and enhance patient outcomes.</p></div>","PeriodicalId":251,"journal":{"name":"Biochimie","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0300908424000749/pdfft?md5=058b3ddc3df668c738a551bf6c562da4&pid=1-s2.0-S0300908424000749-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The impact of chemotherapy on adipose tissue remodeling: The molecular players involved in this tissue wasting\",\"authors\":\"Samuel Barbosa ,&nbsp;Mafalda Barbosa Pedrosa ,&nbsp;Rita Ferreira ,&nbsp;Daniel Moreira-Gonçalves ,&nbsp;Lúcio Lara Santos\",\"doi\":\"10.1016/j.biochi.2024.03.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The depletion of visceral and subcutaneous adipose tissue (AT) during chemotherapy significantly correlates with diminished overall survival and progression-free survival. Despite its clinical significance, the intricate molecular mechanisms governing this AT loss and its chemotherapy-triggered initiation remain poorly understood. Notably, the evaluation of AT remodeling in most clinical trials has predominantly relied on computerized tomography scans or bioimpedance, with molecular studies often conducted using animal or in vitro models. To address this knowledge gap, a comprehensive narrative review was conducted. The findings underscore that chemotherapy serves as a key factor in inducing AT loss, exacerbating cachexia, a paraneoplastic syndrome that significantly compromises patient quality of life and survival. The mechanism driving AT loss appears intricately linked to alterations in AT metabolic remodeling, marked by heightened lipolysis and fatty acid oxidation, coupled with diminished lipogenesis. However, adipocyte stem cells' lost ability to divide due to chemotherapy also appears to be at the root of the loss of AT. Notably, chemotherapy seems to deactivate the mitochondrial antioxidant system by reducing key regulatory enzymes responsible for neutralizing reactive oxygen species (ROS), thereby impeding lipogenesis. Despite FDG-PET evidence of AT browning, no molecular evidence of thermogenesis was reported. Prospective investigations unraveling the molecular mechanisms modulated in AT by chemotherapy, along with therapeutic strategies aimed at preventing AT loss, promise to refine treatment paradigms and enhance patient outcomes.</p></div>\",\"PeriodicalId\":251,\"journal\":{\"name\":\"Biochimie\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0300908424000749/pdfft?md5=058b3ddc3df668c738a551bf6c562da4&pid=1-s2.0-S0300908424000749-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimie\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0300908424000749\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimie","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300908424000749","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

化疗过程中内脏和皮下脂肪组织(AT)的消耗与总生存期和无进展生存期的缩短密切相关。尽管这具有重要的临床意义,但人们对控制内脏和皮下脂肪组织减少及其化疗引发的复杂分子机制仍然知之甚少。值得注意的是,大多数临床试验中对 AT 重塑的评估主要依赖于计算机断层扫描或生物阻抗,而分子研究通常使用动物或体外模型。为了填补这一知识空白,我们进行了一项全面的叙述性综述。研究结果强调,化疗是诱发AT丧失的关键因素,会加剧恶病质,而恶病质是一种副肿瘤综合征,会严重影响患者的生活质量和生存期。促使脂肪细胞减少的机制似乎与脂肪细胞代谢重塑的改变密切相关,其特点是脂肪分解和脂肪酸氧化增加,同时脂肪生成减少。然而,化疗导致脂肪细胞干细胞丧失分裂能力,似乎也是导致脂肪细胞干细胞丧失的根本原因。值得注意的是,化疗似乎通过减少负责中和活性氧(ROS)的关键调节酶,使线粒体抗氧化系统失活,从而阻碍脂肪生成。尽管有 FDG-PET 证据表明 AT 会褐变,但没有关于产热的分子证据的报道。前瞻性研究揭示了化疗对AT的分子调控机制,以及旨在预防AT丧失的治疗策略,有望完善治疗范式并改善患者预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The impact of chemotherapy on adipose tissue remodeling: The molecular players involved in this tissue wasting

The depletion of visceral and subcutaneous adipose tissue (AT) during chemotherapy significantly correlates with diminished overall survival and progression-free survival. Despite its clinical significance, the intricate molecular mechanisms governing this AT loss and its chemotherapy-triggered initiation remain poorly understood. Notably, the evaluation of AT remodeling in most clinical trials has predominantly relied on computerized tomography scans or bioimpedance, with molecular studies often conducted using animal or in vitro models. To address this knowledge gap, a comprehensive narrative review was conducted. The findings underscore that chemotherapy serves as a key factor in inducing AT loss, exacerbating cachexia, a paraneoplastic syndrome that significantly compromises patient quality of life and survival. The mechanism driving AT loss appears intricately linked to alterations in AT metabolic remodeling, marked by heightened lipolysis and fatty acid oxidation, coupled with diminished lipogenesis. However, adipocyte stem cells' lost ability to divide due to chemotherapy also appears to be at the root of the loss of AT. Notably, chemotherapy seems to deactivate the mitochondrial antioxidant system by reducing key regulatory enzymes responsible for neutralizing reactive oxygen species (ROS), thereby impeding lipogenesis. Despite FDG-PET evidence of AT browning, no molecular evidence of thermogenesis was reported. Prospective investigations unraveling the molecular mechanisms modulated in AT by chemotherapy, along with therapeutic strategies aimed at preventing AT loss, promise to refine treatment paradigms and enhance patient outcomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochimie
Biochimie 生物-生化与分子生物学
CiteScore
7.20
自引率
2.60%
发文量
219
审稿时长
40 days
期刊介绍: Biochimie publishes original research articles, short communications, review articles, graphical reviews, mini-reviews, and hypotheses in the broad areas of biology, including biochemistry, enzymology, molecular and cell biology, metabolic regulation, genetics, immunology, microbiology, structural biology, genomics, proteomics, and molecular mechanisms of disease. Biochimie publishes exclusively in English. Articles are subject to peer review, and must satisfy the requirements of originality, high scientific integrity and general interest to a broad range of readers. Submissions that are judged to be of sound scientific and technical quality but do not fully satisfy the requirements for publication in Biochimie may benefit from a transfer service to a more suitable journal within the same subject area.
期刊最新文献
Inside front cover-EDB Inside front cover-EDB Translocator protein (TSPO), still an enigmatic transmembrane protein: From structures to functions Inside front cover-EDB The mitochondrial translocator protein (TSPO) in Alzheimer's disease: Therapeutic and immunomodulatory functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1