Yuan Zhang , Xinning Hu , Chunyan Cui , Xu Cui , Feifei Niu , Luzhong Wang , Qiuliang Wang
{"title":"磁悬浮超导转子的离心变形效应研究","authors":"Yuan Zhang , Xinning Hu , Chunyan Cui , Xu Cui , Feifei Niu , Luzhong Wang , Qiuliang Wang","doi":"10.1016/j.physc.2024.1354462","DOIUrl":null,"url":null,"abstract":"<div><p>The high-speed rotating superconducting rotor can be made into a high-precision inertial device. Centrifugal deformation is one of the key factors affecting the drift speed of the rotating superconducting rotor's polar axis. The larger the drift speed, the worse the accuracy of the inertial device. Applying magnetic torque to the superconducting rotor to compensate for the magnetic disturbance torque generated by centrifugal deformation is one of the effective methods to improve the measurement accuracy of the inertial device made of a superconducting rotor. To compensate for the magnetic disturbance torque caused by centrifugal deformation accurately, we studied the centrifugal deformation effect of the rotating superconducting rotor. In this paper, the centrifugal deformation of the superconducting rotor is analyzed first. And then the influence of centrifugal deformation of the superconducting rotor on magnetic force was studied by Finite Element Method (FEM). The results show that centrifugal deformation can reduce the magnetic levitation force of the superconducting rotor, leading to suspension position drift. Finally, the drift speed of the superconducting rotor's polar axis caused by centrifugal deformation is investigated, including the drift speed caused by centrifugal deformation of the rotating superconducting rotor, as well as the drift speed generated by the coupling of centrifugal deformation and suspension position drift of the superconducting rotor. The research results provide a reference for more accurate compensation of magnetic disturbance torque caused by centrifugal deformation and further improve the accuracy of superconducting rotor inertial devices.</p></div>","PeriodicalId":20159,"journal":{"name":"Physica C-superconductivity and Its Applications","volume":"619 ","pages":"Article 1354462"},"PeriodicalIF":1.3000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation on centrifugal deformation effect of magnetic levitation superconducting rotor\",\"authors\":\"Yuan Zhang , Xinning Hu , Chunyan Cui , Xu Cui , Feifei Niu , Luzhong Wang , Qiuliang Wang\",\"doi\":\"10.1016/j.physc.2024.1354462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The high-speed rotating superconducting rotor can be made into a high-precision inertial device. Centrifugal deformation is one of the key factors affecting the drift speed of the rotating superconducting rotor's polar axis. The larger the drift speed, the worse the accuracy of the inertial device. Applying magnetic torque to the superconducting rotor to compensate for the magnetic disturbance torque generated by centrifugal deformation is one of the effective methods to improve the measurement accuracy of the inertial device made of a superconducting rotor. To compensate for the magnetic disturbance torque caused by centrifugal deformation accurately, we studied the centrifugal deformation effect of the rotating superconducting rotor. In this paper, the centrifugal deformation of the superconducting rotor is analyzed first. And then the influence of centrifugal deformation of the superconducting rotor on magnetic force was studied by Finite Element Method (FEM). The results show that centrifugal deformation can reduce the magnetic levitation force of the superconducting rotor, leading to suspension position drift. Finally, the drift speed of the superconducting rotor's polar axis caused by centrifugal deformation is investigated, including the drift speed caused by centrifugal deformation of the rotating superconducting rotor, as well as the drift speed generated by the coupling of centrifugal deformation and suspension position drift of the superconducting rotor. The research results provide a reference for more accurate compensation of magnetic disturbance torque caused by centrifugal deformation and further improve the accuracy of superconducting rotor inertial devices.</p></div>\",\"PeriodicalId\":20159,\"journal\":{\"name\":\"Physica C-superconductivity and Its Applications\",\"volume\":\"619 \",\"pages\":\"Article 1354462\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica C-superconductivity and Its Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921453424000273\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica C-superconductivity and Its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921453424000273","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Investigation on centrifugal deformation effect of magnetic levitation superconducting rotor
The high-speed rotating superconducting rotor can be made into a high-precision inertial device. Centrifugal deformation is one of the key factors affecting the drift speed of the rotating superconducting rotor's polar axis. The larger the drift speed, the worse the accuracy of the inertial device. Applying magnetic torque to the superconducting rotor to compensate for the magnetic disturbance torque generated by centrifugal deformation is one of the effective methods to improve the measurement accuracy of the inertial device made of a superconducting rotor. To compensate for the magnetic disturbance torque caused by centrifugal deformation accurately, we studied the centrifugal deformation effect of the rotating superconducting rotor. In this paper, the centrifugal deformation of the superconducting rotor is analyzed first. And then the influence of centrifugal deformation of the superconducting rotor on magnetic force was studied by Finite Element Method (FEM). The results show that centrifugal deformation can reduce the magnetic levitation force of the superconducting rotor, leading to suspension position drift. Finally, the drift speed of the superconducting rotor's polar axis caused by centrifugal deformation is investigated, including the drift speed caused by centrifugal deformation of the rotating superconducting rotor, as well as the drift speed generated by the coupling of centrifugal deformation and suspension position drift of the superconducting rotor. The research results provide a reference for more accurate compensation of magnetic disturbance torque caused by centrifugal deformation and further improve the accuracy of superconducting rotor inertial devices.
期刊介绍:
Physica C (Superconductivity and its Applications) publishes peer-reviewed papers on novel developments in the field of superconductivity. Topics include discovery of new superconducting materials and elucidation of their mechanisms, physics of vortex matter, enhancement of critical properties of superconductors, identification of novel properties and processing methods that improve their performance and promote new routes to applications of superconductivity.
The main goal of the journal is to publish:
1. Papers that substantially increase the understanding of the fundamental aspects and mechanisms of superconductivity and vortex matter through theoretical and experimental methods.
2. Papers that report on novel physical properties and processing of materials that substantially enhance their critical performance.
3. Papers that promote new or improved routes to applications of superconductivity and/or superconducting materials, and proof-of-concept novel proto-type superconducting devices.
The editors of the journal will select papers that are well written and based on thorough research that provide truly novel insights.