他们何时到来?了解并预测比赛日抵达巴塞罗那足球俱乐部球场的时间安排

IF 4.3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Machine Learning Pub Date : 2024-03-26 DOI:10.1007/s10994-023-06499-3
Feliu Serra-Burriel, Pedro Delicado, Fernando M. Cucchietti, Eduardo Graells-Garrido, Alex Gil, Imanol Eguskiza
{"title":"他们何时到来?了解并预测比赛日抵达巴塞罗那足球俱乐部球场的时间安排","authors":"Feliu Serra-Burriel, Pedro Delicado, Fernando M. Cucchietti, Eduardo Graells-Garrido, Alex Gil, Imanol Eguskiza","doi":"10.1007/s10994-023-06499-3","DOIUrl":null,"url":null,"abstract":"<p>Futbol Club Barcelona operates the largest stadium in Europe (with a seating capacity of almost one hundred thousand people) and manages recurring sports events. These are influenced by multiple conditions (time and day of the week, weather, adversary) and affect city dynamics—e.g., peak demand for related services like public transport and stores. We study fine grain audience entrances at the stadium segregated by visitor type and gate to gain insights and predict the arrival behavior of future games, with a direct impact on the organizational performance and productivity of the business. We can forecast the timeline of arrivals at gate level 72 h prior to kickoff, facilitating operational and organizational decision-making by anticipating potential agglomerations and audience behavior. Furthermore, we can identify patterns for different types of visitors and understand how relevant factors affect them. These findings directly impact commercial and business interests and can alter operational logistics, venue management, and safety.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":"72 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"When are they coming? Understanding and forecasting the timeline of arrivals at the FC Barcelona stadium on match days\",\"authors\":\"Feliu Serra-Burriel, Pedro Delicado, Fernando M. Cucchietti, Eduardo Graells-Garrido, Alex Gil, Imanol Eguskiza\",\"doi\":\"10.1007/s10994-023-06499-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Futbol Club Barcelona operates the largest stadium in Europe (with a seating capacity of almost one hundred thousand people) and manages recurring sports events. These are influenced by multiple conditions (time and day of the week, weather, adversary) and affect city dynamics—e.g., peak demand for related services like public transport and stores. We study fine grain audience entrances at the stadium segregated by visitor type and gate to gain insights and predict the arrival behavior of future games, with a direct impact on the organizational performance and productivity of the business. We can forecast the timeline of arrivals at gate level 72 h prior to kickoff, facilitating operational and organizational decision-making by anticipating potential agglomerations and audience behavior. Furthermore, we can identify patterns for different types of visitors and understand how relevant factors affect them. These findings directly impact commercial and business interests and can alter operational logistics, venue management, and safety.</p>\",\"PeriodicalId\":49900,\"journal\":{\"name\":\"Machine Learning\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10994-023-06499-3\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10994-023-06499-3","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

巴塞罗那足球俱乐部运营着欧洲最大的体育场(可容纳近十万人),并管理着经常性的体育赛事。这些赛事受到多种条件(时间、星期、天气、对手)的影响,并对城市动态产生影响,例如对公共交通和商店等相关服务的高峰需求。我们对体育场的观众入口进行细粒度研究,按观众类型和入口进行分类,以深入了解并预测未来比赛的到达行为,这对企业的组织绩效和生产率有直接影响。我们可以在开球前 72 小时预测入场观众的到达时间,通过预测潜在的聚集和观众行为来促进运营和组织决策。此外,我们还能识别不同类型游客的模式,了解相关因素对他们的影响。这些发现会直接影响商业和企业利益,并能改变运营物流、场地管理和安全。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
When are they coming? Understanding and forecasting the timeline of arrivals at the FC Barcelona stadium on match days

Futbol Club Barcelona operates the largest stadium in Europe (with a seating capacity of almost one hundred thousand people) and manages recurring sports events. These are influenced by multiple conditions (time and day of the week, weather, adversary) and affect city dynamics—e.g., peak demand for related services like public transport and stores. We study fine grain audience entrances at the stadium segregated by visitor type and gate to gain insights and predict the arrival behavior of future games, with a direct impact on the organizational performance and productivity of the business. We can forecast the timeline of arrivals at gate level 72 h prior to kickoff, facilitating operational and organizational decision-making by anticipating potential agglomerations and audience behavior. Furthermore, we can identify patterns for different types of visitors and understand how relevant factors affect them. These findings directly impact commercial and business interests and can alter operational logistics, venue management, and safety.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machine Learning
Machine Learning 工程技术-计算机:人工智能
CiteScore
11.00
自引率
2.70%
发文量
162
审稿时长
3 months
期刊介绍: Machine Learning serves as a global platform dedicated to computational approaches in learning. The journal reports substantial findings on diverse learning methods applied to various problems, offering support through empirical studies, theoretical analysis, or connections to psychological phenomena. It demonstrates the application of learning methods to solve significant problems and aims to enhance the conduct of machine learning research with a focus on verifiable and replicable evidence in published papers.
期刊最新文献
On metafeatures’ ability of implicit concept identification Persistent Laplacian-enhanced algorithm for scarcely labeled data classification Towards a foundation large events model for soccer Conformal prediction for regression models with asymmetrically distributed errors: application to aircraft navigation during landing maneuver In-game soccer outcome prediction with offline reinforcement learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1