从蛇毒金属蛋白酶库中提取的抗癌多肽的设计与表征

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-03-27 DOI:10.1007/s10989-024-10602-0
S. Saranya, M. Bharathi, N. Senthil Kumar, P Chellapandi
{"title":"从蛇毒金属蛋白酶库中提取的抗癌多肽的设计与表征","authors":"S. Saranya, M. Bharathi, N. Senthil Kumar, P Chellapandi","doi":"10.1007/s10989-024-10602-0","DOIUrl":null,"url":null,"abstract":"<p>Snake venom metalloproteinases (SVMPs) are enzymatic proteins found in snake venom and are known for their diverse biological activities, including induction of hemorrhage and degradation of fibrinogen. This study aimed to design and characterize anticancer peptides (ACPs) derived from an SVMP library based on their physicochemical properties. A comprehensive analysis predicted 185 ACPs and 177 non-ACPs from 652 SVMPs using a SVM algorithm. Among these, only 23 ACPs demonstrated the ability to penetrate cell membranes, of which 5 were selected as promising candidates. A reliable SVM and confidence scores were obtained for all ACP predictions. The predicted ACPs showed optimal hydrophobicity and favorable structural stability in plasma. The predicted ACPs were characterized by low solubility, high rigidity, and high interaction potential based on their net charge, net hydrogen, and steric hindrance. Among the five ACPs, ACP1 (GDLAAIRKRV) and ACP3 (GDETEIRSRI) had unique amino acid compositions, specifically arginine, lysine, aspartic acid, glutamic acid, and α-helical structures. Molecular docking simulations indicated their interactions with various cancer target proteins, leading to inhibit tumor cell proliferation or migration. In conclusion, ACP01 and ACP03 are potential candidates for the future treatment of breast cancer and leukemia.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Characterization of Anticancer Peptides Derived from Snake Venom Metalloproteinase Library\",\"authors\":\"S. Saranya, M. Bharathi, N. Senthil Kumar, P Chellapandi\",\"doi\":\"10.1007/s10989-024-10602-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Snake venom metalloproteinases (SVMPs) are enzymatic proteins found in snake venom and are known for their diverse biological activities, including induction of hemorrhage and degradation of fibrinogen. This study aimed to design and characterize anticancer peptides (ACPs) derived from an SVMP library based on their physicochemical properties. A comprehensive analysis predicted 185 ACPs and 177 non-ACPs from 652 SVMPs using a SVM algorithm. Among these, only 23 ACPs demonstrated the ability to penetrate cell membranes, of which 5 were selected as promising candidates. A reliable SVM and confidence scores were obtained for all ACP predictions. The predicted ACPs showed optimal hydrophobicity and favorable structural stability in plasma. The predicted ACPs were characterized by low solubility, high rigidity, and high interaction potential based on their net charge, net hydrogen, and steric hindrance. Among the five ACPs, ACP1 (GDLAAIRKRV) and ACP3 (GDETEIRSRI) had unique amino acid compositions, specifically arginine, lysine, aspartic acid, glutamic acid, and α-helical structures. Molecular docking simulations indicated their interactions with various cancer target proteins, leading to inhibit tumor cell proliferation or migration. In conclusion, ACP01 and ACP03 are potential candidates for the future treatment of breast cancer and leukemia.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10989-024-10602-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10989-024-10602-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

蛇毒金属蛋白酶(SVMPs)是一种存在于蛇毒中的酶蛋白,具有多种生物活性,包括诱导出血和降解纤维蛋白原。本研究旨在根据 SVMP 文库的理化特性设计抗癌多肽(ACPs),并对其进行表征。利用 SVM 算法从 652 种 SVMP 中预测出 185 种 ACP 和 177 种非 ACP,并进行了综合分析。其中,只有 23 种 ACP 具有穿透细胞膜的能力,其中 5 种被选为有希望的候选物质。所有 ACP 预测都获得了可靠的 SVM 和置信度分数。预测的 ACP 在血浆中表现出最佳的疏水性和良好的结构稳定性。根据净电荷、净氢和立体阻碍,预测的 ACP 具有低溶解度、高刚性和高相互作用潜力的特点。在五种 ACPs 中,ACP1(GDLAAIRKRV)和 ACP3(GDETEIRSRI)具有独特的氨基酸组成,特别是精氨酸、赖氨酸、天冬氨酸、谷氨酸和 α 螺旋结构。分子对接模拟表明,它们能与多种癌症靶蛋白相互作用,从而抑制肿瘤细胞的增殖或迁移。总之,ACP01 和 ACP03 是未来治疗乳腺癌和白血病的潜在候选药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and Characterization of Anticancer Peptides Derived from Snake Venom Metalloproteinase Library

Snake venom metalloproteinases (SVMPs) are enzymatic proteins found in snake venom and are known for their diverse biological activities, including induction of hemorrhage and degradation of fibrinogen. This study aimed to design and characterize anticancer peptides (ACPs) derived from an SVMP library based on their physicochemical properties. A comprehensive analysis predicted 185 ACPs and 177 non-ACPs from 652 SVMPs using a SVM algorithm. Among these, only 23 ACPs demonstrated the ability to penetrate cell membranes, of which 5 were selected as promising candidates. A reliable SVM and confidence scores were obtained for all ACP predictions. The predicted ACPs showed optimal hydrophobicity and favorable structural stability in plasma. The predicted ACPs were characterized by low solubility, high rigidity, and high interaction potential based on their net charge, net hydrogen, and steric hindrance. Among the five ACPs, ACP1 (GDLAAIRKRV) and ACP3 (GDETEIRSRI) had unique amino acid compositions, specifically arginine, lysine, aspartic acid, glutamic acid, and α-helical structures. Molecular docking simulations indicated their interactions with various cancer target proteins, leading to inhibit tumor cell proliferation or migration. In conclusion, ACP01 and ACP03 are potential candidates for the future treatment of breast cancer and leukemia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1