{"title":"FE-YOLO:基于特征融合和特征增强的 YOLO 船舶探测算法","authors":"Shouwen Cai, Hao Meng, Junbao Wu","doi":"10.1007/s11554-024-01445-5","DOIUrl":null,"url":null,"abstract":"<p>The technology for detecting maritime targets is crucial for realizing ship intelligence. However, traditional detection algorithms are not ideal due to the diversity of marine targets and complex background environments. Therefore, we choose YOLOv7 as the baseline and propose an end-to-end feature fusion and feature enhancement YOLO (FE-YOLO). First, we introduce channel attention and lightweight Ghostconv into the extended efficient layer aggregation network of YOLOv7, resulting in the improved extended efficient layer aggregation network (IELAN) module. This improvement enables the model to capture context information better and thus enhance the target features. Second, to enhance the network’s feature fusion capability, we design the light spatial pyramid pooling combined with the spatial channel pooling (LSPPCSPC) module and the coordinate attention feature pyramid network (CA-FPN). Furthermore, we develop an N-Loss based on normalized Wasserstein distance (NWD), effectively addressing the class imbalance issue in the ship dataset. Experimental results on the open-source Singapore maritime dataset (SMD) and SeaShips dataset demonstrate that compared to the baseline YOLOv7, FE-YOLO achieves an increase of 4.6% and 3.3% in detection accuracy, respectively.</p>","PeriodicalId":51224,"journal":{"name":"Journal of Real-Time Image Processing","volume":"76 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FE-YOLO: YOLO ship detection algorithm based on feature fusion and feature enhancement\",\"authors\":\"Shouwen Cai, Hao Meng, Junbao Wu\",\"doi\":\"10.1007/s11554-024-01445-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The technology for detecting maritime targets is crucial for realizing ship intelligence. However, traditional detection algorithms are not ideal due to the diversity of marine targets and complex background environments. Therefore, we choose YOLOv7 as the baseline and propose an end-to-end feature fusion and feature enhancement YOLO (FE-YOLO). First, we introduce channel attention and lightweight Ghostconv into the extended efficient layer aggregation network of YOLOv7, resulting in the improved extended efficient layer aggregation network (IELAN) module. This improvement enables the model to capture context information better and thus enhance the target features. Second, to enhance the network’s feature fusion capability, we design the light spatial pyramid pooling combined with the spatial channel pooling (LSPPCSPC) module and the coordinate attention feature pyramid network (CA-FPN). Furthermore, we develop an N-Loss based on normalized Wasserstein distance (NWD), effectively addressing the class imbalance issue in the ship dataset. Experimental results on the open-source Singapore maritime dataset (SMD) and SeaShips dataset demonstrate that compared to the baseline YOLOv7, FE-YOLO achieves an increase of 4.6% and 3.3% in detection accuracy, respectively.</p>\",\"PeriodicalId\":51224,\"journal\":{\"name\":\"Journal of Real-Time Image Processing\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Real-Time Image Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11554-024-01445-5\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Real-Time Image Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11554-024-01445-5","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
FE-YOLO: YOLO ship detection algorithm based on feature fusion and feature enhancement
The technology for detecting maritime targets is crucial for realizing ship intelligence. However, traditional detection algorithms are not ideal due to the diversity of marine targets and complex background environments. Therefore, we choose YOLOv7 as the baseline and propose an end-to-end feature fusion and feature enhancement YOLO (FE-YOLO). First, we introduce channel attention and lightweight Ghostconv into the extended efficient layer aggregation network of YOLOv7, resulting in the improved extended efficient layer aggregation network (IELAN) module. This improvement enables the model to capture context information better and thus enhance the target features. Second, to enhance the network’s feature fusion capability, we design the light spatial pyramid pooling combined with the spatial channel pooling (LSPPCSPC) module and the coordinate attention feature pyramid network (CA-FPN). Furthermore, we develop an N-Loss based on normalized Wasserstein distance (NWD), effectively addressing the class imbalance issue in the ship dataset. Experimental results on the open-source Singapore maritime dataset (SMD) and SeaShips dataset demonstrate that compared to the baseline YOLOv7, FE-YOLO achieves an increase of 4.6% and 3.3% in detection accuracy, respectively.
期刊介绍:
Due to rapid advancements in integrated circuit technology, the rich theoretical results that have been developed by the image and video processing research community are now being increasingly applied in practical systems to solve real-world image and video processing problems. Such systems involve constraints placed not only on their size, cost, and power consumption, but also on the timeliness of the image data processed.
Examples of such systems are mobile phones, digital still/video/cell-phone cameras, portable media players, personal digital assistants, high-definition television, video surveillance systems, industrial visual inspection systems, medical imaging devices, vision-guided autonomous robots, spectral imaging systems, and many other real-time embedded systems. In these real-time systems, strict timing requirements demand that results are available within a certain interval of time as imposed by the application.
It is often the case that an image processing algorithm is developed and proven theoretically sound, presumably with a specific application in mind, but its practical applications and the detailed steps, methodology, and trade-off analysis required to achieve its real-time performance are not fully explored, leaving these critical and usually non-trivial issues for those wishing to employ the algorithm in a real-time system.
The Journal of Real-Time Image Processing is intended to bridge the gap between the theory and practice of image processing, serving the greater community of researchers, practicing engineers, and industrial professionals who deal with designing, implementing or utilizing image processing systems which must satisfy real-time design constraints.