从 QED 推导出薛定谔方程

IF 0.6 4区 教育学 Q4 EDUCATION, SCIENTIFIC DISCIPLINES European Journal of Physics Pub Date : 2024-03-12 DOI:10.1088/1361-6404/ad2c2f
Spyros Efthimiades
{"title":"从 QED 推导出薛定谔方程","authors":"Spyros Efthimiades","doi":"10.1088/1361-6404/ad2c2f","DOIUrl":null,"url":null,"abstract":"The Schrödinger equation relates the emergent quantities of wavefunction and electric potential and is postulated as a principle of quantum physics or obtained heuristically. However, physical consistency requires that the Schrödinger equation is a low-energy dynamical condition we can derive from the foundations of quantum electrodynamics. Due to the small value of the electromagnetic coupling constant, we show that the electric potential accurately represents the contributions of intermediate low-energy photon exchanges. Then, from the total nonrelativistic energy relation, we see that the dominant term of the electron wavefunction is a superposition of plane waves that satisfies the Schrödinger equation. Our derivation shows that the Schrödinger equation is not an energy conservation relation because its middle term does not represent the electron kinetic energy as assumed. We analyze the physical content of the Schrödinger equation and verify our assessments by calculating and evaluating the physical quantities in the ground state of the hydrogen atom. Furthermore, we explain why nonrelativistic quantum dynamics differs from classical dynamics. Undergraduate students can follow the derivation because it involves fundamental physical concepts and mathematical expressions, and we explain every step.","PeriodicalId":50480,"journal":{"name":"European Journal of Physics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Derivation of the Schrödinger equation from QED\",\"authors\":\"Spyros Efthimiades\",\"doi\":\"10.1088/1361-6404/ad2c2f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Schrödinger equation relates the emergent quantities of wavefunction and electric potential and is postulated as a principle of quantum physics or obtained heuristically. However, physical consistency requires that the Schrödinger equation is a low-energy dynamical condition we can derive from the foundations of quantum electrodynamics. Due to the small value of the electromagnetic coupling constant, we show that the electric potential accurately represents the contributions of intermediate low-energy photon exchanges. Then, from the total nonrelativistic energy relation, we see that the dominant term of the electron wavefunction is a superposition of plane waves that satisfies the Schrödinger equation. Our derivation shows that the Schrödinger equation is not an energy conservation relation because its middle term does not represent the electron kinetic energy as assumed. We analyze the physical content of the Schrödinger equation and verify our assessments by calculating and evaluating the physical quantities in the ground state of the hydrogen atom. Furthermore, we explain why nonrelativistic quantum dynamics differs from classical dynamics. Undergraduate students can follow the derivation because it involves fundamental physical concepts and mathematical expressions, and we explain every step.\",\"PeriodicalId\":50480,\"journal\":{\"name\":\"European Journal of Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6404/ad2c2f\",\"RegionNum\":4,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6404/ad2c2f","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 0

摘要

薛定谔方程关系到波函数和电动势这两个突现量,它被假定为量子物理学的一个原理,或通过启发式方法获得。然而,物理一致性要求薛定谔方程是我们可以从量子电动力学基础中推导出的低能动力学条件。由于电磁耦合常数的值很小,我们证明电势准确地代表了中间低能光子交换的贡献。然后,从总的非相对论能量关系中,我们发现电子波函数的主导项是平面波的叠加,满足薛定谔方程。我们的推导表明,薛定谔方程并不是能量守恒关系,因为它的中间项并不像假设的那样代表电子动能。我们分析了薛定谔方程的物理内容,并通过计算和评估氢原子基态的物理量验证了我们的评估。此外,我们还解释了非相对论量子动力学不同于经典动力学的原因。由于推导过程涉及基本的物理概念和数学表达式,而且我们对每一步都进行了解释,因此本科生可以跟上推导过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Derivation of the Schrödinger equation from QED
The Schrödinger equation relates the emergent quantities of wavefunction and electric potential and is postulated as a principle of quantum physics or obtained heuristically. However, physical consistency requires that the Schrödinger equation is a low-energy dynamical condition we can derive from the foundations of quantum electrodynamics. Due to the small value of the electromagnetic coupling constant, we show that the electric potential accurately represents the contributions of intermediate low-energy photon exchanges. Then, from the total nonrelativistic energy relation, we see that the dominant term of the electron wavefunction is a superposition of plane waves that satisfies the Schrödinger equation. Our derivation shows that the Schrödinger equation is not an energy conservation relation because its middle term does not represent the electron kinetic energy as assumed. We analyze the physical content of the Schrödinger equation and verify our assessments by calculating and evaluating the physical quantities in the ground state of the hydrogen atom. Furthermore, we explain why nonrelativistic quantum dynamics differs from classical dynamics. Undergraduate students can follow the derivation because it involves fundamental physical concepts and mathematical expressions, and we explain every step.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Journal of Physics
European Journal of Physics 物理-物理:综合
CiteScore
1.70
自引率
28.60%
发文量
128
审稿时长
3-8 weeks
期刊介绍: European Journal of Physics is a journal of the European Physical Society and its primary mission is to assist in maintaining and improving the standard of taught physics in universities and other institutes of higher education. Authors submitting articles must indicate the usefulness of their material to physics education and make clear the level of readership (undergraduate or graduate) for which the article is intended. Submissions that omit this information or which, in the publisher''s opinion, do not contribute to the above mission will not be considered for publication. To this end, we welcome articles that provide original insights and aim to enhance learning in one or more areas of physics. They should normally include at least one of the following: Explanations of how contemporary research can inform the understanding of physics at university level: for example, a survey of a research field at a level accessible to students, explaining how it illustrates some general principles. Original insights into the derivation of results. These should be of some general interest, consisting of more than corrections to textbooks. Descriptions of novel laboratory exercises illustrating new techniques of general interest. Those based on relatively inexpensive equipment are especially welcome. Articles of a scholarly or reflective nature that are aimed to be of interest to, and at a level appropriate for, physics students or recent graduates. Descriptions of successful and original student projects, experimental, theoretical or computational. Discussions of the history, philosophy and epistemology of physics, at a level accessible to physics students and teachers. Reports of new developments in physics curricula and the techniques for teaching physics. Physics Education Research reports: articles that provide original experimental and/or theoretical research contributions that directly relate to the teaching and learning of university-level physics.
期刊最新文献
Flow of water out of a funnel Investigative photometry experiments on planar extended-light sources Drude’s lesser known error of a factor of two and Lorentz’s correction Additional applications of the Lambert W function to solid state physics The process of constructing new knowledge: an undergraduate laboratory exercise facilitated by a vacuum capacitor-resistor circuit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1