Sitian Qian, Tianyi Yang, Sen Deng, Jie Xiao, Leyun Gao, Andrew Michael Levin, Qiang Li, Meng Lu, Zhengyun You
{"title":"中微子-中微子碰撞的物理学案例","authors":"Sitian Qian, Tianyi Yang, Sen Deng, Jie Xiao, Leyun Gao, Andrew Michael Levin, Qiang Li, Meng Lu, Zhengyun You","doi":"10.1088/1361-6471/ad2b7d","DOIUrl":null,"url":null,"abstract":"Addressing the mass origin and properties of neutrinos is of strong interest to particle physics, baryogenesis and cosmology. Popular explanations involve physics beyond the standard model, for example, the dimension-5 Weinberg operator or heavy Majorana neutrinos arising from ‘seesaw’ models. The current best direct limits on the electron neutrino mass, derived from nuclei beta decay or neutrinoless double beta decay processes, are at the sub-electronvolt level. Here we propose a novel neutrino–neutrino collider where the neutrino beam is generated from TeV scale muon decays. Such collisions can happen between either neutrinos and anti-neutrinos, or neutrinos and neutrinos. We find that with a tiny integrated luminosity of about 10<sup>−5</sup> fb<sup>−1</sup> we can already expect to observe direct neutrino anti-neutrino annihilation, <inline-formula>\n<tex-math>\n<?CDATA $\\nu \\bar{\\nu }\\to {\\rm{Z}}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mi>ν</mml:mi><mml:mover accent=\"true\"><mml:mrow><mml:mi>ν</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover><mml:mo>→</mml:mo><mml:mi mathvariant=\"normal\">Z</mml:mi></mml:math>\n<inline-graphic xlink:href=\"jpgad2b7dieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>, which also opens the door to explore neutrino related resonances <inline-formula>\n<tex-math>\n<?CDATA $\\nu \\bar{\\nu }\\to {\\rm{X}}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mi>ν</mml:mi><mml:mover accent=\"true\"><mml:mrow><mml:mi>ν</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover><mml:mo>→</mml:mo><mml:mi mathvariant=\"normal\">X</mml:mi></mml:math>\n<inline-graphic xlink:href=\"jpgad2b7dieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>. The low luminosity requirement can accommodate a relatively large emittance muon beam. Such a device would also allow for probing heavy Majorana neutrino and effective Majorana neutrino mass through <italic toggle=\"yes\">ν</italic>\n<italic toggle=\"yes\">ν</italic> → HH to a competitive level, for both electron and muon types.","PeriodicalId":16766,"journal":{"name":"Journal of Physics G: Nuclear and Particle Physics","volume":"13 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The physics case for neutrino–neutrino collisions\",\"authors\":\"Sitian Qian, Tianyi Yang, Sen Deng, Jie Xiao, Leyun Gao, Andrew Michael Levin, Qiang Li, Meng Lu, Zhengyun You\",\"doi\":\"10.1088/1361-6471/ad2b7d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Addressing the mass origin and properties of neutrinos is of strong interest to particle physics, baryogenesis and cosmology. Popular explanations involve physics beyond the standard model, for example, the dimension-5 Weinberg operator or heavy Majorana neutrinos arising from ‘seesaw’ models. The current best direct limits on the electron neutrino mass, derived from nuclei beta decay or neutrinoless double beta decay processes, are at the sub-electronvolt level. Here we propose a novel neutrino–neutrino collider where the neutrino beam is generated from TeV scale muon decays. Such collisions can happen between either neutrinos and anti-neutrinos, or neutrinos and neutrinos. We find that with a tiny integrated luminosity of about 10<sup>−5</sup> fb<sup>−1</sup> we can already expect to observe direct neutrino anti-neutrino annihilation, <inline-formula>\\n<tex-math>\\n<?CDATA $\\\\nu \\\\bar{\\\\nu }\\\\to {\\\\rm{Z}}$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mi>ν</mml:mi><mml:mover accent=\\\"true\\\"><mml:mrow><mml:mi>ν</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover><mml:mo>→</mml:mo><mml:mi mathvariant=\\\"normal\\\">Z</mml:mi></mml:math>\\n<inline-graphic xlink:href=\\\"jpgad2b7dieqn1.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>, which also opens the door to explore neutrino related resonances <inline-formula>\\n<tex-math>\\n<?CDATA $\\\\nu \\\\bar{\\\\nu }\\\\to {\\\\rm{X}}$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mi>ν</mml:mi><mml:mover accent=\\\"true\\\"><mml:mrow><mml:mi>ν</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover><mml:mo>→</mml:mo><mml:mi mathvariant=\\\"normal\\\">X</mml:mi></mml:math>\\n<inline-graphic xlink:href=\\\"jpgad2b7dieqn2.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>. The low luminosity requirement can accommodate a relatively large emittance muon beam. Such a device would also allow for probing heavy Majorana neutrino and effective Majorana neutrino mass through <italic toggle=\\\"yes\\\">ν</italic>\\n<italic toggle=\\\"yes\\\">ν</italic> → HH to a competitive level, for both electron and muon types.\",\"PeriodicalId\":16766,\"journal\":{\"name\":\"Journal of Physics G: Nuclear and Particle Physics\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics G: Nuclear and Particle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6471/ad2b7d\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics G: Nuclear and Particle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6471/ad2b7d","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
Addressing the mass origin and properties of neutrinos is of strong interest to particle physics, baryogenesis and cosmology. Popular explanations involve physics beyond the standard model, for example, the dimension-5 Weinberg operator or heavy Majorana neutrinos arising from ‘seesaw’ models. The current best direct limits on the electron neutrino mass, derived from nuclei beta decay or neutrinoless double beta decay processes, are at the sub-electronvolt level. Here we propose a novel neutrino–neutrino collider where the neutrino beam is generated from TeV scale muon decays. Such collisions can happen between either neutrinos and anti-neutrinos, or neutrinos and neutrinos. We find that with a tiny integrated luminosity of about 10−5 fb−1 we can already expect to observe direct neutrino anti-neutrino annihilation, νν¯→Z, which also opens the door to explore neutrino related resonances νν¯→X. The low luminosity requirement can accommodate a relatively large emittance muon beam. Such a device would also allow for probing heavy Majorana neutrino and effective Majorana neutrino mass through νν → HH to a competitive level, for both electron and muon types.
期刊介绍:
Journal of Physics G: Nuclear and Particle Physics (JPhysG) publishes articles on theoretical and experimental topics in all areas of nuclear and particle physics, including nuclear and particle astrophysics. The journal welcomes submissions from any interface area between these fields.
All aspects of fundamental nuclear physics research, including:
nuclear forces and few-body systems;
nuclear structure and nuclear reactions;
rare decays and fundamental symmetries;
hadronic physics, lattice QCD;
heavy-ion physics;
hot and dense matter, QCD phase diagram.
All aspects of elementary particle physics research, including:
high-energy particle physics;
neutrino physics;
phenomenology and theory;
beyond standard model physics;
electroweak interactions;
fundamental symmetries.
All aspects of nuclear and particle astrophysics including:
nuclear physics of stars and stellar explosions;
nucleosynthesis;
nuclear equation of state;
astrophysical neutrino physics;
cosmic rays;
dark matter.
JPhysG publishes a variety of article types for the community. As well as high-quality research papers, this includes our prestigious topical review series, focus issues, and the rapid publication of letters.