构建和应用新型高效毛细管电泳通用检测系统

IF 1.2 4区 化学 Q4 BIOCHEMICAL RESEARCH METHODS Chromatographia Pub Date : 2024-03-27 DOI:10.1007/s10337-024-04320-4
Tao Huang, Chunsu Liang, Jing Li, Liyu Gong, Jinxiang Xu, Kai Zhu, Xibei Yang, Xin Hu, Youqi Yan, Xiaomei Ling
{"title":"构建和应用新型高效毛细管电泳通用检测系统","authors":"Tao Huang,&nbsp;Chunsu Liang,&nbsp;Jing Li,&nbsp;Liyu Gong,&nbsp;Jinxiang Xu,&nbsp;Kai Zhu,&nbsp;Xibei Yang,&nbsp;Xin Hu,&nbsp;Youqi Yan,&nbsp;Xiaomei Ling","doi":"10.1007/s10337-024-04320-4","DOIUrl":null,"url":null,"abstract":"<div><p>Conventional high performance capillary electrophoresis (HPCE) detection modes mainly rely on chromogenic, fluorogenic, ionizable, or redox properties of analytes, greatly limiting the scope of analysis. Therefore, the development of a universal HPCE detection system has raised great attention. Herein, by tandem connection of different diameter capillaries (TCDDC), a novel and universal HPCE detection system called interface-induced current detector (IICRD) was constructed. The current signal peaks of analytes in the current-electrophoretograms (CR-EGs) can be observed for the first time. The results of detector performance tests showed good repeatability and high sensitivity. The theoretical deduction and experimental verification were further carried out. To prove the detection ability, several substances with or without special responsive groups were qualitatively and quantitatively analyzed. Firstly, cations and anions in inorganic electrolytes (inorganic salts, acids and alkalis) can be simultaneously separated and analyzed. Furthermore, several small molecular weight organic compounds, monosaccharides and disaccharides were also analyzed. The current signal peaks in CR-EGs were identified and discussed. For quantitative analysis, system suitability tests were evaluated, the results of quantitative analysis methodology validation showed that the new method was qualified for quantitative analysis. The linear relationship between the values of current intensity and the concentrations of analytes can be obtained over the investigated concentration ranges. In summary, the HPCE-DAD-IICRD system showed lower baseline noise, higher sensitivity and higher S/N especially for samples without special responsive groups, showing complementary advantages when combined with other detectors. It is expected to be a novel HPCE detection system for extensive applications.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":518,"journal":{"name":"Chromatographia","volume":"87 5","pages":"325 - 337"},"PeriodicalIF":1.2000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction and Application of a Novel Universal Detection System for High Performance Capillary Electrophoresis\",\"authors\":\"Tao Huang,&nbsp;Chunsu Liang,&nbsp;Jing Li,&nbsp;Liyu Gong,&nbsp;Jinxiang Xu,&nbsp;Kai Zhu,&nbsp;Xibei Yang,&nbsp;Xin Hu,&nbsp;Youqi Yan,&nbsp;Xiaomei Ling\",\"doi\":\"10.1007/s10337-024-04320-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Conventional high performance capillary electrophoresis (HPCE) detection modes mainly rely on chromogenic, fluorogenic, ionizable, or redox properties of analytes, greatly limiting the scope of analysis. Therefore, the development of a universal HPCE detection system has raised great attention. Herein, by tandem connection of different diameter capillaries (TCDDC), a novel and universal HPCE detection system called interface-induced current detector (IICRD) was constructed. The current signal peaks of analytes in the current-electrophoretograms (CR-EGs) can be observed for the first time. The results of detector performance tests showed good repeatability and high sensitivity. The theoretical deduction and experimental verification were further carried out. To prove the detection ability, several substances with or without special responsive groups were qualitatively and quantitatively analyzed. Firstly, cations and anions in inorganic electrolytes (inorganic salts, acids and alkalis) can be simultaneously separated and analyzed. Furthermore, several small molecular weight organic compounds, monosaccharides and disaccharides were also analyzed. The current signal peaks in CR-EGs were identified and discussed. For quantitative analysis, system suitability tests were evaluated, the results of quantitative analysis methodology validation showed that the new method was qualified for quantitative analysis. The linear relationship between the values of current intensity and the concentrations of analytes can be obtained over the investigated concentration ranges. In summary, the HPCE-DAD-IICRD system showed lower baseline noise, higher sensitivity and higher S/N especially for samples without special responsive groups, showing complementary advantages when combined with other detectors. It is expected to be a novel HPCE detection system for extensive applications.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":518,\"journal\":{\"name\":\"Chromatographia\",\"volume\":\"87 5\",\"pages\":\"325 - 337\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chromatographia\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10337-024-04320-4\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chromatographia","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10337-024-04320-4","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

传统的高效毛细管电泳(HPCE)检测模式主要依赖于分析物的发色性、发氟性、可电离性或氧化还原性,极大地限制了分析范围。因此,开发一种通用的 HPCE 检测系统引起了人们的极大关注。本文通过串联不同直径的毛细管(TCDDC),构建了一种新型的通用型 HPCE 检测系统--界面诱导电流检测器(IICRD)。首次在电流电泳图(CR-EGs)中观察到了分析物的电流信号峰。探测器性能测试结果表明,该探测器具有良好的重复性和较高的灵敏度。我们进一步进行了理论推导和实验验证。为了证明其检测能力,对几种含有或不含有特殊反应基团的物质进行了定性和定量分析。首先,可以同时分离和分析无机电解质(无机盐、酸和碱)中的阳离子和阴离子。此外,还分析了几种小分子量有机化合物、单糖和双糖。对 CR-EG 中的电流信号峰进行了识别和讨论。在定量分析方面,进行了系统适用性测试,定量分析方法验证结果表明新方法符合定量分析要求。在所研究的浓度范围内,电流强度值与分析物浓度之间呈线性关系。总之,HPCE-DAD-IICRD 系统的基线噪声较低,灵敏度较高,信噪比也较高,特别是在没有特殊反应基团的样品中,与其他检测器结合使用时显示出互补优势。它有望成为一种新型的 HPCE 检测系统,得到广泛应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Construction and Application of a Novel Universal Detection System for High Performance Capillary Electrophoresis

Conventional high performance capillary electrophoresis (HPCE) detection modes mainly rely on chromogenic, fluorogenic, ionizable, or redox properties of analytes, greatly limiting the scope of analysis. Therefore, the development of a universal HPCE detection system has raised great attention. Herein, by tandem connection of different diameter capillaries (TCDDC), a novel and universal HPCE detection system called interface-induced current detector (IICRD) was constructed. The current signal peaks of analytes in the current-electrophoretograms (CR-EGs) can be observed for the first time. The results of detector performance tests showed good repeatability and high sensitivity. The theoretical deduction and experimental verification were further carried out. To prove the detection ability, several substances with or without special responsive groups were qualitatively and quantitatively analyzed. Firstly, cations and anions in inorganic electrolytes (inorganic salts, acids and alkalis) can be simultaneously separated and analyzed. Furthermore, several small molecular weight organic compounds, monosaccharides and disaccharides were also analyzed. The current signal peaks in CR-EGs were identified and discussed. For quantitative analysis, system suitability tests were evaluated, the results of quantitative analysis methodology validation showed that the new method was qualified for quantitative analysis. The linear relationship between the values of current intensity and the concentrations of analytes can be obtained over the investigated concentration ranges. In summary, the HPCE-DAD-IICRD system showed lower baseline noise, higher sensitivity and higher S/N especially for samples without special responsive groups, showing complementary advantages when combined with other detectors. It is expected to be a novel HPCE detection system for extensive applications.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chromatographia
Chromatographia 化学-分析化学
CiteScore
3.40
自引率
5.90%
发文量
103
审稿时长
2.2 months
期刊介绍: Separation sciences, in all their various forms such as chromatography, field-flow fractionation, and electrophoresis, provide some of the most powerful techniques in analytical chemistry and are applied within a number of important application areas, including archaeology, biotechnology, clinical, environmental, food, medical, petroleum, pharmaceutical, polymer and biopolymer research. Beyond serving analytical purposes, separation techniques are also used for preparative and process-scale applications. The scope and power of separation sciences is significantly extended by combination with spectroscopic detection methods (e.g., laser-based approaches, nuclear-magnetic resonance, Raman, chemiluminescence) and particularly, mass spectrometry, to create hyphenated techniques. In addition to exciting new developments in chromatography, such as ultra high-pressure systems, multidimensional separations, and high-temperature approaches, there have also been great advances in hybrid methods combining chromatography and electro-based separations, especially on the micro- and nanoscale. Integrated biological procedures (e.g., enzymatic, immunological, receptor-based assays) can also be part of the overall analytical process.
期刊最新文献
New Comb-Like Polyelectrolytes in Capillary Electrophoresis Identification and Structural Characterization of New Degradation Products in Moxidectin Stressed Samples by LC-HRMS and NMR Systematic Development of a Gradient Elution HPLC Method for the Analysis of Voxelotor and Its Structurally Related Substances Applying Analytical Quality by Design Approach An UPLC Method for Determination of Structural Analogues of DM1: the Payload of Trastuzumab Emtansine (T-DM1) Simultaneous Enrichment and Purification of Licorice Chalcone A and Isoliquiritigenin in Licorice Using a Mixed-Mode Monolith
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1