Changyuan Dai, Qingtian Su, Changyu Shao, Chunlei Zhang
{"title":"由横向连接的 OSD 和复合材料桥面板组成的混合桥面板系统弯曲行为的实验和数值分析","authors":"Changyuan Dai, Qingtian Su, Changyu Shao, Chunlei Zhang","doi":"10.1007/s13296-024-00823-w","DOIUrl":null,"url":null,"abstract":"<div><p>The outer lanes and emergency lanes of the bridge deck of long-span bridges in which orthotropic steel deck is adopted were replaced with Ultra-High-Performance-Concrete (UHPC) composite deck to create a hybrid bridge deck system. A transverse connection detail was proposed to connect the two different bridge deck forms. Static bending tests and theoretical analysis were conducted on the transverse connection detail to obtain failure modes, ultimate load-carrying capacity, crack resistance, and the collaborative bending performance under positive and negative moments. A calculation method for the ultimate load-carrying capacity considering residual stresses in the UHPC after cracking was provided. The results show that the transverse connection detail has good plastic deformation capacity and collaboratively supports both sides of the bridge deck. The error in predicting the ultimate load-carrying capacity of specimens under positive bending moments using the proposed theoretical calculation method is 3.9%, and for specimens under negative bending moments, the load-carrying capacity is controlled by local buckling of the steel, with a 3.1% difference between theoretical and measured values.</p></div>","PeriodicalId":596,"journal":{"name":"International Journal of Steel Structures","volume":"24 2","pages":"393 - 404"},"PeriodicalIF":1.1000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and Numerical Analysis on Bending Behavior of Hybrid Bridge Deck System Composed of Transversely Connected OSD and Composite Deck\",\"authors\":\"Changyuan Dai, Qingtian Su, Changyu Shao, Chunlei Zhang\",\"doi\":\"10.1007/s13296-024-00823-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The outer lanes and emergency lanes of the bridge deck of long-span bridges in which orthotropic steel deck is adopted were replaced with Ultra-High-Performance-Concrete (UHPC) composite deck to create a hybrid bridge deck system. A transverse connection detail was proposed to connect the two different bridge deck forms. Static bending tests and theoretical analysis were conducted on the transverse connection detail to obtain failure modes, ultimate load-carrying capacity, crack resistance, and the collaborative bending performance under positive and negative moments. A calculation method for the ultimate load-carrying capacity considering residual stresses in the UHPC after cracking was provided. The results show that the transverse connection detail has good plastic deformation capacity and collaboratively supports both sides of the bridge deck. The error in predicting the ultimate load-carrying capacity of specimens under positive bending moments using the proposed theoretical calculation method is 3.9%, and for specimens under negative bending moments, the load-carrying capacity is controlled by local buckling of the steel, with a 3.1% difference between theoretical and measured values.</p></div>\",\"PeriodicalId\":596,\"journal\":{\"name\":\"International Journal of Steel Structures\",\"volume\":\"24 2\",\"pages\":\"393 - 404\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Steel Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13296-024-00823-w\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Steel Structures","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13296-024-00823-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Experimental and Numerical Analysis on Bending Behavior of Hybrid Bridge Deck System Composed of Transversely Connected OSD and Composite Deck
The outer lanes and emergency lanes of the bridge deck of long-span bridges in which orthotropic steel deck is adopted were replaced with Ultra-High-Performance-Concrete (UHPC) composite deck to create a hybrid bridge deck system. A transverse connection detail was proposed to connect the two different bridge deck forms. Static bending tests and theoretical analysis were conducted on the transverse connection detail to obtain failure modes, ultimate load-carrying capacity, crack resistance, and the collaborative bending performance under positive and negative moments. A calculation method for the ultimate load-carrying capacity considering residual stresses in the UHPC after cracking was provided. The results show that the transverse connection detail has good plastic deformation capacity and collaboratively supports both sides of the bridge deck. The error in predicting the ultimate load-carrying capacity of specimens under positive bending moments using the proposed theoretical calculation method is 3.9%, and for specimens under negative bending moments, the load-carrying capacity is controlled by local buckling of the steel, with a 3.1% difference between theoretical and measured values.
期刊介绍:
The International Journal of Steel Structures provides an international forum for a broad classification of technical papers in steel structural research and its applications. The journal aims to reach not only researchers, but also practicing engineers. Coverage encompasses such topics as stability, fatigue, non-linear behavior, dynamics, reliability, fire, design codes, computer-aided analysis and design, optimization, expert systems, connections, fabrications, maintenance, bridges, off-shore structures, jetties, stadiums, transmission towers, marine vessels, storage tanks, pressure vessels, aerospace, and pipelines and more.