{"title":"平面矩阵和费曼图阵列:高 k 的极点","authors":"Alfredo Guevara, Yong Zhang","doi":"10.1088/1572-9494/ad1095","DOIUrl":null,"url":null,"abstract":"Planar arrays of tree diagrams were introduced as a generalization of Feynman diagrams that enable the computation of biadjoint amplitudes <inline-formula>\n<tex-math>\n<?CDATA ${m}_{n}^{(k)}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:msubsup><mml:mrow><mml:mi>m</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow></mml:msubsup></mml:math>\n<inline-graphic xlink:href=\"ctpad1095ieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> for <italic toggle=\"yes\">k</italic> > 2. In this follow-up work, we investigate the poles of <inline-formula>\n<tex-math>\n<?CDATA ${m}_{n}^{(k)}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:msubsup><mml:mrow><mml:mi>m</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow></mml:msubsup></mml:math>\n<inline-graphic xlink:href=\"ctpad1095ieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> from the perspective of such arrays. For general <italic toggle=\"yes\">k</italic>, we characterize the underlying polytope as a Flag Complex and propose a computation of the amplitude-based solely on the knowledge of the poles, whose number is drastically less than the number of the full arrays. As an example, we first provide all the poles for the cases (<italic toggle=\"yes\">k</italic>, <italic toggle=\"yes\">n</italic>) = (3, 7), (3, 8), (3, 9), (3, 10), (4, 8) and (4, 9) in terms of their planar arrays of degenerate Feynman diagrams. We then implement simple compatibility criteria together with an addition operation between arrays and recover the full collections/arrays for such cases. Along the way, we implement hard and soft kinematical limits, which provide a map between the poles in kinematic space and their combinatoric arrays. We use the operation to give a proof of a previously conjectured combinatorial duality for arrays in (<italic toggle=\"yes\">k</italic>, <italic toggle=\"yes\">n</italic>) and (<italic toggle=\"yes\">n</italic> − <italic toggle=\"yes\">k</italic>, <italic toggle=\"yes\">n</italic>). We also outline the relation to boundary maps of the hypersimplex Δ<sub>\n<italic toggle=\"yes\">k</italic>,<italic toggle=\"yes\">n</italic>\n</sub> and rays in the tropical Grassmannian <inline-formula>\n<tex-math>\n<?CDATA $\\mathrm{Tr}(k,n)$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mi>Tr</mml:mi><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>k</mml:mi><mml:mo>,</mml:mo><mml:mi>n</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:math>\n<inline-graphic xlink:href=\"ctpad1095ieqn3.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>.","PeriodicalId":10641,"journal":{"name":"Communications in Theoretical Physics","volume":"13 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Planar matrices and arrays of Feynman diagrams: poles for higher k\",\"authors\":\"Alfredo Guevara, Yong Zhang\",\"doi\":\"10.1088/1572-9494/ad1095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Planar arrays of tree diagrams were introduced as a generalization of Feynman diagrams that enable the computation of biadjoint amplitudes <inline-formula>\\n<tex-math>\\n<?CDATA ${m}_{n}^{(k)}$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:msubsup><mml:mrow><mml:mi>m</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy=\\\"false\\\">)</mml:mo></mml:mrow></mml:msubsup></mml:math>\\n<inline-graphic xlink:href=\\\"ctpad1095ieqn1.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> for <italic toggle=\\\"yes\\\">k</italic> > 2. In this follow-up work, we investigate the poles of <inline-formula>\\n<tex-math>\\n<?CDATA ${m}_{n}^{(k)}$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:msubsup><mml:mrow><mml:mi>m</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy=\\\"false\\\">)</mml:mo></mml:mrow></mml:msubsup></mml:math>\\n<inline-graphic xlink:href=\\\"ctpad1095ieqn2.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> from the perspective of such arrays. For general <italic toggle=\\\"yes\\\">k</italic>, we characterize the underlying polytope as a Flag Complex and propose a computation of the amplitude-based solely on the knowledge of the poles, whose number is drastically less than the number of the full arrays. As an example, we first provide all the poles for the cases (<italic toggle=\\\"yes\\\">k</italic>, <italic toggle=\\\"yes\\\">n</italic>) = (3, 7), (3, 8), (3, 9), (3, 10), (4, 8) and (4, 9) in terms of their planar arrays of degenerate Feynman diagrams. We then implement simple compatibility criteria together with an addition operation between arrays and recover the full collections/arrays for such cases. Along the way, we implement hard and soft kinematical limits, which provide a map between the poles in kinematic space and their combinatoric arrays. We use the operation to give a proof of a previously conjectured combinatorial duality for arrays in (<italic toggle=\\\"yes\\\">k</italic>, <italic toggle=\\\"yes\\\">n</italic>) and (<italic toggle=\\\"yes\\\">n</italic> − <italic toggle=\\\"yes\\\">k</italic>, <italic toggle=\\\"yes\\\">n</italic>). We also outline the relation to boundary maps of the hypersimplex Δ<sub>\\n<italic toggle=\\\"yes\\\">k</italic>,<italic toggle=\\\"yes\\\">n</italic>\\n</sub> and rays in the tropical Grassmannian <inline-formula>\\n<tex-math>\\n<?CDATA $\\\\mathrm{Tr}(k,n)$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mi>Tr</mml:mi><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mi>k</mml:mi><mml:mo>,</mml:mo><mml:mi>n</mml:mi><mml:mo stretchy=\\\"false\\\">)</mml:mo></mml:math>\\n<inline-graphic xlink:href=\\\"ctpad1095ieqn3.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>.\",\"PeriodicalId\":10641,\"journal\":{\"name\":\"Communications in Theoretical Physics\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Theoretical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1572-9494/ad1095\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1572-9494/ad1095","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Planar matrices and arrays of Feynman diagrams: poles for higher k
Planar arrays of tree diagrams were introduced as a generalization of Feynman diagrams that enable the computation of biadjoint amplitudes mn(k) for k > 2. In this follow-up work, we investigate the poles of mn(k) from the perspective of such arrays. For general k, we characterize the underlying polytope as a Flag Complex and propose a computation of the amplitude-based solely on the knowledge of the poles, whose number is drastically less than the number of the full arrays. As an example, we first provide all the poles for the cases (k, n) = (3, 7), (3, 8), (3, 9), (3, 10), (4, 8) and (4, 9) in terms of their planar arrays of degenerate Feynman diagrams. We then implement simple compatibility criteria together with an addition operation between arrays and recover the full collections/arrays for such cases. Along the way, we implement hard and soft kinematical limits, which provide a map between the poles in kinematic space and their combinatoric arrays. We use the operation to give a proof of a previously conjectured combinatorial duality for arrays in (k, n) and (n − k, n). We also outline the relation to boundary maps of the hypersimplex Δk,n and rays in the tropical Grassmannian Tr(k,n).
期刊介绍:
Communications in Theoretical Physics is devoted to reporting important new developments in the area of theoretical physics. Papers cover the fields of:
mathematical physics
quantum physics and quantum information
particle physics and quantum field theory
nuclear physics
gravitation theory, astrophysics and cosmology
atomic, molecular, optics (AMO) and plasma physics, chemical physics
statistical physics, soft matter and biophysics
condensed matter theory
others
Certain new interdisciplinary subjects are also incorporated.