范德华和电荷耦合碳纳米管的机械响应

IF 1.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Modelling and Simulation in Materials Science and Engineering Pub Date : 2024-03-01 DOI:10.1088/1361-651x/ad29af
Aningi Mokhalingam, Indranil S Dalal, Shakti S Gupta
{"title":"范德华和电荷耦合碳纳米管的机械响应","authors":"Aningi Mokhalingam, Indranil S Dalal, Shakti S Gupta","doi":"10.1088/1361-651x/ad29af","DOIUrl":null,"url":null,"abstract":"This work investigates the mechanical response of single-walled carbon nanotubes (SWCNTs) coupled through van der Waals and electrostatic forces using molecular dynamic (MD) simulations and a continuum model. In MD simulations, the covalent bond interactions between the carbon atoms are modeled using three sets of ReaxFF potential parameters (Strachan <italic toggle=\"yes\">et al</italic> 2003 <italic toggle=\"yes\">Phys. Rev. Lett.</italic>\n<bold>91</bold> 098301; Srinivasan <italic toggle=\"yes\">et al</italic> 2015 <italic toggle=\"yes\">J. Phys. Chem.</italic> A <bold>119</bold> 571–80; Damirchi <italic toggle=\"yes\">et al</italic> 2020 <italic toggle=\"yes\">J. Phys. Chem.</italic> C <bold>124</bold> 20488–97). The dynamic charges, dependent on the local environment, are calculated employing the charge equilibrium formalism within the ReaxFF. In the continuum model, the SWCNTs are modeled using the geometrically nonlinear Euler-Bernoulli beam theory. The Galerkin’s approach is used to discretize the equations of motion. An approximate model to account for the end charge concentration in the SWCNTs, calibrated from the MD data, is incorporated into the beam model. The pair of SWCNTs are prescribed with two sets of boundary conditions: Fixed–fixed and fixed–free. The pull-in voltages at which the two SWCNTs snap onto each other with fixed–fixed boundary conditions obtained from the MD simulations using the potential parameters of Strachan <italic toggle=\"yes\">et al</italic> (2003 <italic toggle=\"yes\">Phys. Rev. Lett.</italic>\n<bold>91</bold> 098301), Srinivasan <italic toggle=\"yes\">et al</italic> (2015 <italic toggle=\"yes\">J. Phys. Chem.</italic> A <bold>119</bold> 571–80) and Damirchi <italic toggle=\"yes\">et al</italic> (2020 <italic toggle=\"yes\">J. Phys. Chem.</italic> C <bold>124</bold> 20488–97) agree within an error of <inline-formula>\n<tex-math><?CDATA ${\\sim}0.5\\%$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mo>∼</mml:mo></mml:mrow><mml:mn>0.5</mml:mn><mml:mi mathvariant=\"normal\">%</mml:mi></mml:math>\n<inline-graphic xlink:href=\"msmsad29afieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>, <inline-formula>\n<tex-math><?CDATA ${\\sim}0.5\\%$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mo>∼</mml:mo></mml:mrow><mml:mn>0.5</mml:mn><mml:mi mathvariant=\"normal\">%</mml:mi></mml:math>\n<inline-graphic xlink:href=\"msmsad29afieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>, and 7.2%, respectively, with those computed from the nonlinear beam theory. For fixed–free boundary conditions, the role of geometric nonlinearity is found to be insignificant. However, for this case, the concentrated charges play a significant role in determining the pull-in voltages. The post-pull-in response of the SWCNTs for both boundary conditions is investigated in detail through the MD simulations. The post-pull-in results presented here can be used as a benchmark for results obtained from continuum models in the future. Further, the proposed research helps design nano-resonators/tweezers/switches.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical response of van der Waals and charge coupled carbon nanotubes\",\"authors\":\"Aningi Mokhalingam, Indranil S Dalal, Shakti S Gupta\",\"doi\":\"10.1088/1361-651x/ad29af\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work investigates the mechanical response of single-walled carbon nanotubes (SWCNTs) coupled through van der Waals and electrostatic forces using molecular dynamic (MD) simulations and a continuum model. In MD simulations, the covalent bond interactions between the carbon atoms are modeled using three sets of ReaxFF potential parameters (Strachan <italic toggle=\\\"yes\\\">et al</italic> 2003 <italic toggle=\\\"yes\\\">Phys. Rev. Lett.</italic>\\n<bold>91</bold> 098301; Srinivasan <italic toggle=\\\"yes\\\">et al</italic> 2015 <italic toggle=\\\"yes\\\">J. Phys. Chem.</italic> A <bold>119</bold> 571–80; Damirchi <italic toggle=\\\"yes\\\">et al</italic> 2020 <italic toggle=\\\"yes\\\">J. Phys. Chem.</italic> C <bold>124</bold> 20488–97). The dynamic charges, dependent on the local environment, are calculated employing the charge equilibrium formalism within the ReaxFF. In the continuum model, the SWCNTs are modeled using the geometrically nonlinear Euler-Bernoulli beam theory. The Galerkin’s approach is used to discretize the equations of motion. An approximate model to account for the end charge concentration in the SWCNTs, calibrated from the MD data, is incorporated into the beam model. The pair of SWCNTs are prescribed with two sets of boundary conditions: Fixed–fixed and fixed–free. The pull-in voltages at which the two SWCNTs snap onto each other with fixed–fixed boundary conditions obtained from the MD simulations using the potential parameters of Strachan <italic toggle=\\\"yes\\\">et al</italic> (2003 <italic toggle=\\\"yes\\\">Phys. Rev. Lett.</italic>\\n<bold>91</bold> 098301), Srinivasan <italic toggle=\\\"yes\\\">et al</italic> (2015 <italic toggle=\\\"yes\\\">J. Phys. Chem.</italic> A <bold>119</bold> 571–80) and Damirchi <italic toggle=\\\"yes\\\">et al</italic> (2020 <italic toggle=\\\"yes\\\">J. Phys. Chem.</italic> C <bold>124</bold> 20488–97) agree within an error of <inline-formula>\\n<tex-math><?CDATA ${\\\\sim}0.5\\\\%$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mo>∼</mml:mo></mml:mrow><mml:mn>0.5</mml:mn><mml:mi mathvariant=\\\"normal\\\">%</mml:mi></mml:math>\\n<inline-graphic xlink:href=\\\"msmsad29afieqn1.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>, <inline-formula>\\n<tex-math><?CDATA ${\\\\sim}0.5\\\\%$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mo>∼</mml:mo></mml:mrow><mml:mn>0.5</mml:mn><mml:mi mathvariant=\\\"normal\\\">%</mml:mi></mml:math>\\n<inline-graphic xlink:href=\\\"msmsad29afieqn2.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>, and 7.2%, respectively, with those computed from the nonlinear beam theory. For fixed–free boundary conditions, the role of geometric nonlinearity is found to be insignificant. However, for this case, the concentrated charges play a significant role in determining the pull-in voltages. The post-pull-in response of the SWCNTs for both boundary conditions is investigated in detail through the MD simulations. The post-pull-in results presented here can be used as a benchmark for results obtained from continuum models in the future. Further, the proposed research helps design nano-resonators/tweezers/switches.\",\"PeriodicalId\":18648,\"journal\":{\"name\":\"Modelling and Simulation in Materials Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modelling and Simulation in Materials Science and Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-651x/ad29af\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Materials Science and Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-651x/ad29af","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用分子动力学(MD)模拟和连续体模型研究了通过范德华力和静电力耦合的单壁碳纳米管(SWCNT)的机械响应。在 MD 模拟中,碳原子之间的共价键相互作用使用三组 ReaxFF 电位参数建模(Strachan 等人,2003 年,Phys. Rev. Lett.91 098301;Srinivasan 等人,2015 年,J. Phys.A 119 571-80;Damirchi 等人 2020 J. Phys.C 124 20488-97).动态电荷取决于局部环境,采用 ReaxFF 中的电荷平衡形式主义进行计算。在连续模型中,SWCNT 采用几何非线性欧拉-伯努利梁理论建模。伽勒金方法用于离散运动方程。根据 MD 数据校准的 SWCNT 末端电荷浓度近似模型被纳入梁模型。这对 SWCNT 有两组边界条件:固定-固定和固定-无固定。通过使用 Strachan 等人(2003 年 Phys.098301)、Srinivasan 等人(2015 年 J. Phys. Chem. A 119 571-80)和 Damirchi 等人(2020 年 J. Phys. Chem. C 124 20488-97)使用势参数进行 MD 模拟得到的结果与非线性束理论计算结果的误差分别为 ∼0.5%、∼0.5% 和 7.2%。在无固定边界条件下,几何非线性的作用并不明显。然而,在这种情况下,集中电荷在决定拉入电压方面起着重要作用。我们通过 MD 模拟详细研究了这两种边界条件下 SWCNT 的拉入后响应。本文介绍的拉入后结果可作为未来连续模型结果的基准。此外,这项研究还有助于设计纳米谐振器/镊子/开关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mechanical response of van der Waals and charge coupled carbon nanotubes
This work investigates the mechanical response of single-walled carbon nanotubes (SWCNTs) coupled through van der Waals and electrostatic forces using molecular dynamic (MD) simulations and a continuum model. In MD simulations, the covalent bond interactions between the carbon atoms are modeled using three sets of ReaxFF potential parameters (Strachan et al 2003 Phys. Rev. Lett. 91 098301; Srinivasan et al 2015 J. Phys. Chem. A 119 571–80; Damirchi et al 2020 J. Phys. Chem. C 124 20488–97). The dynamic charges, dependent on the local environment, are calculated employing the charge equilibrium formalism within the ReaxFF. In the continuum model, the SWCNTs are modeled using the geometrically nonlinear Euler-Bernoulli beam theory. The Galerkin’s approach is used to discretize the equations of motion. An approximate model to account for the end charge concentration in the SWCNTs, calibrated from the MD data, is incorporated into the beam model. The pair of SWCNTs are prescribed with two sets of boundary conditions: Fixed–fixed and fixed–free. The pull-in voltages at which the two SWCNTs snap onto each other with fixed–fixed boundary conditions obtained from the MD simulations using the potential parameters of Strachan et al (2003 Phys. Rev. Lett. 91 098301), Srinivasan et al (2015 J. Phys. Chem. A 119 571–80) and Damirchi et al (2020 J. Phys. Chem. C 124 20488–97) agree within an error of 0.5% , 0.5% , and 7.2%, respectively, with those computed from the nonlinear beam theory. For fixed–free boundary conditions, the role of geometric nonlinearity is found to be insignificant. However, for this case, the concentrated charges play a significant role in determining the pull-in voltages. The post-pull-in response of the SWCNTs for both boundary conditions is investigated in detail through the MD simulations. The post-pull-in results presented here can be used as a benchmark for results obtained from continuum models in the future. Further, the proposed research helps design nano-resonators/tweezers/switches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
96
审稿时长
1.7 months
期刊介绍: Serving the multidisciplinary materials community, the journal aims to publish new research work that advances the understanding and prediction of material behaviour at scales from atomistic to macroscopic through modelling and simulation. Subject coverage: Modelling and/or simulation across materials science that emphasizes fundamental materials issues advancing the understanding and prediction of material behaviour. Interdisciplinary research that tackles challenging and complex materials problems where the governing phenomena may span different scales of materials behaviour, with an emphasis on the development of quantitative approaches to explain and predict experimental observations. Material processing that advances the fundamental materials science and engineering underpinning the connection between processing and properties. Covering all classes of materials, and mechanical, microstructural, electronic, chemical, biological, and optical properties.
期刊最新文献
Plastic deformation mechanism of γ phase Fe–Cr alloy revealed by molecular dynamics simulations A nonlinear phase-field model of corrosion with charging kinetics of electric double layer Effect of helium bubbles on the mobility of edge dislocations in copper Mechanical-electric-magnetic-thermal coupled enriched finite element method for magneto-electro-elastic structures Molecular dynamics simulations of high-energy radiation damage in hcp-titanium considering electronic effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1