设计和制造用于微型电化学加工中间隙状态监测的传感器集成硅电极

IF 2.4 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Micromechanics and Microengineering Pub Date : 2024-03-06 DOI:10.1088/1361-6439/ad2c1f
Yulan Zhu, Guodong Liu, Yong Li, Hao Tong
{"title":"设计和制造用于微型电化学加工中间隙状态监测的传感器集成硅电极","authors":"Yulan Zhu, Guodong Liu, Yong Li, Hao Tong","doi":"10.1088/1361-6439/ad2c1f","DOIUrl":null,"url":null,"abstract":"The monitoring of micro machining gap and the control of machining status within the gap have become bottlenecks in the research and development of micro electrochemical machining (ECM). General electrical signals are difficult to reflect the status of micro machining gap. Electrolytic products in micro machining gap are prone to precipitation and retention, leading to unstable material removal process. Micro ECM urgently requires gap status monitoring and feedback control. To realize gap status monitoring, a sensors-integrated silicon electrode, with a micro temperature sensor and a micro conductivity sensor on the silicon electrode near-front sidewall, is proposed innovatively in this study. Based on bulk silicon process and electroplating process, sensors-integrated silicon electrodes are designed and fabricated. Based on the signal processing system built for the temperature and conductivity sensor, the temperature and conductivity detection functions are verified and the sensors are calibrated. Micro ECM experiments with sensors-integrated silicon electrodes are carried out and micro holes with 200 <italic toggle=\"yes\">μ</italic>m depth are machined. For the conductivity sensor on the sensors-integrated silicon electrode, due to the affection of electrolytic environment, the function surface is contaminated and damaged, and the structural design needs to be further improved. For the temperature sensor, it is not affected by the electrolytic environment due to insulation-film’s protection, and reliable temperature monitoring is achieved in micro ECM. The detection results indicate that the temperature inside the machining gap has increased by 20 °C due to the electrochemical thermal effect and resistance thermal effect in micro ECM, and the temperature shows an increasing trend while machining depth increasing. The feasibility of process monitoring with sensors-integrated silicon electrode in micro ECM is preliminarily verified.","PeriodicalId":16346,"journal":{"name":"Journal of Micromechanics and Microengineering","volume":"87 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and fabrication of a sensors-integrated silicon electrode for gap status monitoring in micro electrochemical machining\",\"authors\":\"Yulan Zhu, Guodong Liu, Yong Li, Hao Tong\",\"doi\":\"10.1088/1361-6439/ad2c1f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The monitoring of micro machining gap and the control of machining status within the gap have become bottlenecks in the research and development of micro electrochemical machining (ECM). General electrical signals are difficult to reflect the status of micro machining gap. Electrolytic products in micro machining gap are prone to precipitation and retention, leading to unstable material removal process. Micro ECM urgently requires gap status monitoring and feedback control. To realize gap status monitoring, a sensors-integrated silicon electrode, with a micro temperature sensor and a micro conductivity sensor on the silicon electrode near-front sidewall, is proposed innovatively in this study. Based on bulk silicon process and electroplating process, sensors-integrated silicon electrodes are designed and fabricated. Based on the signal processing system built for the temperature and conductivity sensor, the temperature and conductivity detection functions are verified and the sensors are calibrated. Micro ECM experiments with sensors-integrated silicon electrodes are carried out and micro holes with 200 <italic toggle=\\\"yes\\\">μ</italic>m depth are machined. For the conductivity sensor on the sensors-integrated silicon electrode, due to the affection of electrolytic environment, the function surface is contaminated and damaged, and the structural design needs to be further improved. For the temperature sensor, it is not affected by the electrolytic environment due to insulation-film’s protection, and reliable temperature monitoring is achieved in micro ECM. The detection results indicate that the temperature inside the machining gap has increased by 20 °C due to the electrochemical thermal effect and resistance thermal effect in micro ECM, and the temperature shows an increasing trend while machining depth increasing. The feasibility of process monitoring with sensors-integrated silicon electrode in micro ECM is preliminarily verified.\",\"PeriodicalId\":16346,\"journal\":{\"name\":\"Journal of Micromechanics and Microengineering\",\"volume\":\"87 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micromechanics and Microengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6439/ad2c1f\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromechanics and Microengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6439/ad2c1f","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

微型加工间隙的监测和间隙内加工状态的控制已成为微型电化学加工(ECM)研发的瓶颈。一般的电信号很难反映微加工间隙的状态。微加工间隙中的电解产物容易析出和滞留,导致材料去除过程不稳定。微型 ECM 迫切需要间隙状态监测和反馈控制。为实现间隙状态监测,本研究创新性地提出了一种传感器集成硅电极,在硅电极近前侧壁上安装微型温度传感器和微型电导率传感器。基于块硅工艺和电镀工艺,设计并制造了传感器集成硅电极。基于为温度和电导率传感器构建的信号处理系统,对温度和电导率检测功能进行了验证,并对传感器进行了校准。使用传感器集成硅电极进行微型 ECM 实验,并加工出深度为 200 μm 的微孔。对于传感器集成硅电极上的电导率传感器,由于电解环境的影响,功能表面受到污染和损坏,结构设计需要进一步改进。而温度传感器由于绝缘膜的保护,不受电解环境的影响,在微型 ECM 中实现了可靠的温度监测。检测结果表明,由于微型 ECM 中的电化学热效应和电阻热效应,加工间隙内的温度升高了 20 °C,而且随着加工深度的增加,温度呈上升趋势。初步验证了在微型 ECM 中使用集成传感器的硅电极进行过程监控的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and fabrication of a sensors-integrated silicon electrode for gap status monitoring in micro electrochemical machining
The monitoring of micro machining gap and the control of machining status within the gap have become bottlenecks in the research and development of micro electrochemical machining (ECM). General electrical signals are difficult to reflect the status of micro machining gap. Electrolytic products in micro machining gap are prone to precipitation and retention, leading to unstable material removal process. Micro ECM urgently requires gap status monitoring and feedback control. To realize gap status monitoring, a sensors-integrated silicon electrode, with a micro temperature sensor and a micro conductivity sensor on the silicon electrode near-front sidewall, is proposed innovatively in this study. Based on bulk silicon process and electroplating process, sensors-integrated silicon electrodes are designed and fabricated. Based on the signal processing system built for the temperature and conductivity sensor, the temperature and conductivity detection functions are verified and the sensors are calibrated. Micro ECM experiments with sensors-integrated silicon electrodes are carried out and micro holes with 200 μm depth are machined. For the conductivity sensor on the sensors-integrated silicon electrode, due to the affection of electrolytic environment, the function surface is contaminated and damaged, and the structural design needs to be further improved. For the temperature sensor, it is not affected by the electrolytic environment due to insulation-film’s protection, and reliable temperature monitoring is achieved in micro ECM. The detection results indicate that the temperature inside the machining gap has increased by 20 °C due to the electrochemical thermal effect and resistance thermal effect in micro ECM, and the temperature shows an increasing trend while machining depth increasing. The feasibility of process monitoring with sensors-integrated silicon electrode in micro ECM is preliminarily verified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Micromechanics and Microengineering
Journal of Micromechanics and Microengineering 工程技术-材料科学:综合
CiteScore
4.50
自引率
4.30%
发文量
136
审稿时长
2.8 months
期刊介绍: Journal of Micromechanics and Microengineering (JMM) primarily covers experimental work, however relevant modelling papers are considered where supported by experimental data. The journal is focussed on all aspects of: -nano- and micro- mechanical systems -nano- and micro- electomechanical systems -nano- and micro- electrical and mechatronic systems -nano- and micro- engineering -nano- and micro- scale science Please note that we do not publish materials papers with no obvious application or link to nano- or micro-engineering. Below are some examples of the topics that are included within the scope of the journal: -MEMS and NEMS: Including sensors, optical MEMS/NEMS, RF MEMS/NEMS, etc. -Fabrication techniques and manufacturing: Including micromachining, etching, lithography, deposition, patterning, self-assembly, 3d printing, inkjet printing. -Packaging and Integration technologies. -Materials, testing, and reliability. -Micro- and nano-fluidics: Including optofluidics, acoustofluidics, droplets, microreactors, organ-on-a-chip. -Lab-on-a-chip and micro- and nano-total analysis systems. -Biomedical systems and devices: Including bio MEMS, biosensors, assays, organ-on-a-chip, drug delivery, cells, biointerfaces. -Energy and power: Including power MEMS/NEMS, energy harvesters, actuators, microbatteries. -Electronics: Including flexible electronics, wearable electronics, interface electronics. -Optical systems. -Robotics.
期刊最新文献
A highly accurate analytical method for determination of the vibrational frequency of N/MEMS with electrostatic and van der Waals interaction forces Design and performance analysis of an embedded amplified piezoelectric jetting dispensing valve Heterogeneous micro-architectonic integration of SU-8 and highly entangled polyacrylamide hydrogel to realize cut-resistant soft superhydrophobic surfaces Fabrication of ultra-low expansion glass based double paddle oscillator Electrohydrodynamic jet printed templates for hot embossing of microfluidic devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1