Emmanuel Agunloye, Panagiotis Petsagkourakis, Muhammad Yusuf, Ricardo Labes, Thomas Chamberlain, Frans L. Muller, Richard A. Bourne and Federico Galvanin
{"title":"利用基于模型的实验设计,通过云服务自动识别动力学模型","authors":"Emmanuel Agunloye, Panagiotis Petsagkourakis, Muhammad Yusuf, Ricardo Labes, Thomas Chamberlain, Frans L. Muller, Richard A. Bourne and Federico Galvanin","doi":"10.1039/D4RE00047A","DOIUrl":null,"url":null,"abstract":"<p >Industry 4.0 has birthed a new era for the chemical manufacturing sector, transforming reactor design and integrating digital twin into process control. To bridge the gap between autonomous chemistry development, on-demand manufacturing and real-time optimization, we developed a cloud-based platform driven by model-based design of experiment (MBDoE) algorithms integrated in a simulation software for model identification (SimBot) to remotely coordinate a smart flow reactor, also known as the LabBot, sited in a different location. With real-time data and setpoints synchronization, MBDoE was able to identify kinetic models using a limited number of experimental runs. Within this platform, two pharmaceutically relevant syntheses were investigated as case studies: amide formation and nucleophilic aromatic substitution. A new kinetic model providing statistically adequate data description within the whole investigated experimental design space was identified for the amide formation reaction. The model for the nucleophilic aromatic substitution with a well-known but complex mechanism was accurately identified ensuring a statistically precise estimation of kinetic parameters.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/re/d4re00047a?page=search","citationCount":"0","resultStr":"{\"title\":\"Automated kinetic model identification via cloud services using model-based design of experiments†\",\"authors\":\"Emmanuel Agunloye, Panagiotis Petsagkourakis, Muhammad Yusuf, Ricardo Labes, Thomas Chamberlain, Frans L. Muller, Richard A. Bourne and Federico Galvanin\",\"doi\":\"10.1039/D4RE00047A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Industry 4.0 has birthed a new era for the chemical manufacturing sector, transforming reactor design and integrating digital twin into process control. To bridge the gap between autonomous chemistry development, on-demand manufacturing and real-time optimization, we developed a cloud-based platform driven by model-based design of experiment (MBDoE) algorithms integrated in a simulation software for model identification (SimBot) to remotely coordinate a smart flow reactor, also known as the LabBot, sited in a different location. With real-time data and setpoints synchronization, MBDoE was able to identify kinetic models using a limited number of experimental runs. Within this platform, two pharmaceutically relevant syntheses were investigated as case studies: amide formation and nucleophilic aromatic substitution. A new kinetic model providing statistically adequate data description within the whole investigated experimental design space was identified for the amide formation reaction. The model for the nucleophilic aromatic substitution with a well-known but complex mechanism was accurately identified ensuring a statistically precise estimation of kinetic parameters.</p>\",\"PeriodicalId\":101,\"journal\":{\"name\":\"Reaction Chemistry & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/re/d4re00047a?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reaction Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/re/d4re00047a\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/re/d4re00047a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Automated kinetic model identification via cloud services using model-based design of experiments†
Industry 4.0 has birthed a new era for the chemical manufacturing sector, transforming reactor design and integrating digital twin into process control. To bridge the gap between autonomous chemistry development, on-demand manufacturing and real-time optimization, we developed a cloud-based platform driven by model-based design of experiment (MBDoE) algorithms integrated in a simulation software for model identification (SimBot) to remotely coordinate a smart flow reactor, also known as the LabBot, sited in a different location. With real-time data and setpoints synchronization, MBDoE was able to identify kinetic models using a limited number of experimental runs. Within this platform, two pharmaceutically relevant syntheses were investigated as case studies: amide formation and nucleophilic aromatic substitution. A new kinetic model providing statistically adequate data description within the whole investigated experimental design space was identified for the amide formation reaction. The model for the nucleophilic aromatic substitution with a well-known but complex mechanism was accurately identified ensuring a statistically precise estimation of kinetic parameters.
期刊介绍:
Reaction Chemistry & Engineering is a new journal reporting cutting edge research into all aspects of making molecules for the benefit of fundamental research, applied processes and wider society.
From fundamental, molecular-level chemistry to large scale chemical production, Reaction Chemistry & Engineering brings together communities of chemists and chemical engineers working to ensure the crucial role of reaction chemistry in today’s world.