物联网架构中基于云计算的自适应传输策略

IF 2.3 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC EURASIP Journal on Wireless Communications and Networking Pub Date : 2024-03-27 DOI:10.1186/s13638-024-02341-z
Bin Li, Vivian Li, Miao Li, John Li, Jiaqi Yang, Bin Li
{"title":"物联网架构中基于云计算的自适应传输策略","authors":"Bin Li, Vivian Li, Miao Li, John Li, Jiaqi Yang, Bin Li","doi":"10.1186/s13638-024-02341-z","DOIUrl":null,"url":null,"abstract":"<p>Because of recent developments in wireless communication, sensor technology, and computing technology, researchers have recently shown a significant amount of interest in the Internet of Vehicles (IoV), which has become feasible as a result of these improvements. Because of the distinctive characteristics of IoV, such as the varied compute and communication capacities of network nodes, it is difficult to process jobs that are time-sensitive. The purpose of this study is to investigate the ways in which cloud computing may collaborate with the IoV to make the processing of time-sensitive procedures easier. We propose a vehicle design that makes advantage of cloud computing as a means of accomplishing this goal. Increasing the proportion of time-sensitive jobs that are ultimately completed was the motivation behind the development of the offloading model that we devised. Taking this into perspective, we present an adaptive task offloading and transmission method. Taking into account the ever-changing requirements and constraints on the available resources, this algorithm dynamically organizes all of the tasks into separate cloud link lists on the cloud. Following that, the tasks contained within each list are distributed in a cooperative manner to a number of different nodes, with the characteristics of those nodes being taken into consideration. Following the presentation of the simulation model, we carried out an experimental investigation into the effectiveness of the model that was proposed. It is abundantly evident that the proposed model is effective, as indicated by the findings.</p>","PeriodicalId":12040,"journal":{"name":"EURASIP Journal on Wireless Communications and Networking","volume":"9 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An adaptive transmission strategy based on cloud computing in IoV architecture\",\"authors\":\"Bin Li, Vivian Li, Miao Li, John Li, Jiaqi Yang, Bin Li\",\"doi\":\"10.1186/s13638-024-02341-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Because of recent developments in wireless communication, sensor technology, and computing technology, researchers have recently shown a significant amount of interest in the Internet of Vehicles (IoV), which has become feasible as a result of these improvements. Because of the distinctive characteristics of IoV, such as the varied compute and communication capacities of network nodes, it is difficult to process jobs that are time-sensitive. The purpose of this study is to investigate the ways in which cloud computing may collaborate with the IoV to make the processing of time-sensitive procedures easier. We propose a vehicle design that makes advantage of cloud computing as a means of accomplishing this goal. Increasing the proportion of time-sensitive jobs that are ultimately completed was the motivation behind the development of the offloading model that we devised. Taking this into perspective, we present an adaptive task offloading and transmission method. Taking into account the ever-changing requirements and constraints on the available resources, this algorithm dynamically organizes all of the tasks into separate cloud link lists on the cloud. Following that, the tasks contained within each list are distributed in a cooperative manner to a number of different nodes, with the characteristics of those nodes being taken into consideration. Following the presentation of the simulation model, we carried out an experimental investigation into the effectiveness of the model that was proposed. It is abundantly evident that the proposed model is effective, as indicated by the findings.</p>\",\"PeriodicalId\":12040,\"journal\":{\"name\":\"EURASIP Journal on Wireless Communications and Networking\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURASIP Journal on Wireless Communications and Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1186/s13638-024-02341-z\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP Journal on Wireless Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s13638-024-02341-z","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

由于无线通信、传感器技术和计算技术的最新发展,研究人员最近对车联网(IoV)产生了浓厚的兴趣。由于 IoV 的显著特点,例如网络节点的计算和通信能力各不相同,因此很难处理具有时间敏感性的工作。本研究的目的是探讨云计算与 IoV 合作的方式,使时间敏感性程序的处理变得更容易。我们提出了一种利用云计算实现这一目标的车辆设计方案。提高最终完成的时间敏感性工作的比例是我们开发卸载模型的动机。有鉴于此,我们提出了一种自适应任务卸载和传输方法。考虑到对可用资源不断变化的要求和限制,该算法将所有任务动态地组织到云上的独立云链接列表中。之后,每个列表中包含的任务会以合作的方式分配给多个不同的节点,同时考虑到这些节点的特性。在介绍了模拟模型后,我们对所提出模型的有效性进行了实验调查。研究结果充分表明,所提出的模型是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An adaptive transmission strategy based on cloud computing in IoV architecture

Because of recent developments in wireless communication, sensor technology, and computing technology, researchers have recently shown a significant amount of interest in the Internet of Vehicles (IoV), which has become feasible as a result of these improvements. Because of the distinctive characteristics of IoV, such as the varied compute and communication capacities of network nodes, it is difficult to process jobs that are time-sensitive. The purpose of this study is to investigate the ways in which cloud computing may collaborate with the IoV to make the processing of time-sensitive procedures easier. We propose a vehicle design that makes advantage of cloud computing as a means of accomplishing this goal. Increasing the proportion of time-sensitive jobs that are ultimately completed was the motivation behind the development of the offloading model that we devised. Taking this into perspective, we present an adaptive task offloading and transmission method. Taking into account the ever-changing requirements and constraints on the available resources, this algorithm dynamically organizes all of the tasks into separate cloud link lists on the cloud. Following that, the tasks contained within each list are distributed in a cooperative manner to a number of different nodes, with the characteristics of those nodes being taken into consideration. Following the presentation of the simulation model, we carried out an experimental investigation into the effectiveness of the model that was proposed. It is abundantly evident that the proposed model is effective, as indicated by the findings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.70
自引率
3.80%
发文量
109
审稿时长
8.0 months
期刊介绍: The overall aim of the EURASIP Journal on Wireless Communications and Networking (EURASIP JWCN) is to bring together science and applications of wireless communications and networking technologies with emphasis on signal processing techniques and tools. It is directed at both practicing engineers and academic researchers. EURASIP Journal on Wireless Communications and Networking will highlight the continued growth and new challenges in wireless technology, for both application development and basic research. Articles should emphasize original results relating to the theory and/or applications of wireless communications and networking. Review articles, especially those emphasizing multidisciplinary views of communications and networking, are also welcome. EURASIP Journal on Wireless Communications and Networking employs a paperless, electronic submission and evaluation system to promote a rapid turnaround in the peer-review process. The journal is an Open Access journal since 2004.
期刊最新文献
Anti-jamming for cognitive radio networks with Stackelberg game-assisted DSSS approach A SAR analysis of hexagonal-shaped UWB antenna for healthcare applications Successive interference cancellation with multiple feedback in NOMA-enabled massive IoT network Performance analysis of shared relay CR-NOMA network based on SWIPT Computational offloading into UAV swarm networks: a systematic literature review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1