Nikolay Zotov, Konstantin Gubaev, Julian Wörner, Blazej Grabowski
{"title":"用于静态和动态研究 bcc Nb 中螺钉位错的力矩张量势能","authors":"Nikolay Zotov, Konstantin Gubaev, Julian Wörner, Blazej Grabowski","doi":"10.1088/1361-651x/ad2d68","DOIUrl":null,"url":null,"abstract":"A new machine-learning interatomic potential, specifically a moment tensor potential (MTP), is developed for the study of screw-dislocation properties in body-centered-cubic (bcc) Nb in the thermally- and stress-assisted temperature regime. Importantly, configurations with straight screw dislocations and with kink pairs are included in the training set. The resulting MTP reproduces with near density-functional theory (DFT) accuracy a broad range of physical properties of bcc Nb, in particular, the Peierls barrier and the compact screw-dislocation core structure. Moreover, it accurately reproduces the energy of the easy core and the twinning-anti-twinning asymmetry of the critical resolved shear stress (CRSS). Thereby, the developed MTP enables large-scale molecular dynamics simulations with near DFT accuracy of properties such as for example the Peierls stress, the critical waiting time for the onset of screw dislocation movement, atomic trajectories of screw dislocation migration, as well as the temperature dependence of the CRSS. A critical assessment of previous results obtained with classical embedded atom method potentials thus becomes possible.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Moment tensor potential for static and dynamic investigations of screw dislocations in bcc Nb\",\"authors\":\"Nikolay Zotov, Konstantin Gubaev, Julian Wörner, Blazej Grabowski\",\"doi\":\"10.1088/1361-651x/ad2d68\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new machine-learning interatomic potential, specifically a moment tensor potential (MTP), is developed for the study of screw-dislocation properties in body-centered-cubic (bcc) Nb in the thermally- and stress-assisted temperature regime. Importantly, configurations with straight screw dislocations and with kink pairs are included in the training set. The resulting MTP reproduces with near density-functional theory (DFT) accuracy a broad range of physical properties of bcc Nb, in particular, the Peierls barrier and the compact screw-dislocation core structure. Moreover, it accurately reproduces the energy of the easy core and the twinning-anti-twinning asymmetry of the critical resolved shear stress (CRSS). Thereby, the developed MTP enables large-scale molecular dynamics simulations with near DFT accuracy of properties such as for example the Peierls stress, the critical waiting time for the onset of screw dislocation movement, atomic trajectories of screw dislocation migration, as well as the temperature dependence of the CRSS. A critical assessment of previous results obtained with classical embedded atom method potentials thus becomes possible.\",\"PeriodicalId\":18648,\"journal\":{\"name\":\"Modelling and Simulation in Materials Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modelling and Simulation in Materials Science and Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-651x/ad2d68\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Materials Science and Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-651x/ad2d68","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Moment tensor potential for static and dynamic investigations of screw dislocations in bcc Nb
A new machine-learning interatomic potential, specifically a moment tensor potential (MTP), is developed for the study of screw-dislocation properties in body-centered-cubic (bcc) Nb in the thermally- and stress-assisted temperature regime. Importantly, configurations with straight screw dislocations and with kink pairs are included in the training set. The resulting MTP reproduces with near density-functional theory (DFT) accuracy a broad range of physical properties of bcc Nb, in particular, the Peierls barrier and the compact screw-dislocation core structure. Moreover, it accurately reproduces the energy of the easy core and the twinning-anti-twinning asymmetry of the critical resolved shear stress (CRSS). Thereby, the developed MTP enables large-scale molecular dynamics simulations with near DFT accuracy of properties such as for example the Peierls stress, the critical waiting time for the onset of screw dislocation movement, atomic trajectories of screw dislocation migration, as well as the temperature dependence of the CRSS. A critical assessment of previous results obtained with classical embedded atom method potentials thus becomes possible.
期刊介绍:
Serving the multidisciplinary materials community, the journal aims to publish new research work that advances the understanding and prediction of material behaviour at scales from atomistic to macroscopic through modelling and simulation.
Subject coverage:
Modelling and/or simulation across materials science that emphasizes fundamental materials issues advancing the understanding and prediction of material behaviour. Interdisciplinary research that tackles challenging and complex materials problems where the governing phenomena may span different scales of materials behaviour, with an emphasis on the development of quantitative approaches to explain and predict experimental observations. Material processing that advances the fundamental materials science and engineering underpinning the connection between processing and properties. Covering all classes of materials, and mechanical, microstructural, electronic, chemical, biological, and optical properties.