深度功能多重指数模型在 SER 中的应用

Matthieu Saumard, Abir El Haj, Thibault Napoleon
{"title":"深度功能多重指数模型在 SER 中的应用","authors":"Matthieu Saumard, Abir El Haj, Thibault Napoleon","doi":"arxiv-2403.17562","DOIUrl":null,"url":null,"abstract":"Speech Emotion Recognition (SER) plays a crucial role in advancing\nhuman-computer interaction and speech processing capabilities. We introduce a\nnovel deep-learning architecture designed specifically for the functional data\nmodel known as the multiple-index functional model. Our key innovation lies in\nintegrating adaptive basis layers and an automated data transformation search\nwithin the deep learning framework. Simulations for this new model show good\nperformances. This allows us to extract features tailored for chunk-level SER,\nbased on Mel Frequency Cepstral Coefficients (MFCCs). We demonstrate the\neffectiveness of our approach on the benchmark IEMOCAP database, achieving good\nperformance compared to existing methods.","PeriodicalId":501178,"journal":{"name":"arXiv - CS - Sound","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep functional multiple index models with an application to SER\",\"authors\":\"Matthieu Saumard, Abir El Haj, Thibault Napoleon\",\"doi\":\"arxiv-2403.17562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Speech Emotion Recognition (SER) plays a crucial role in advancing\\nhuman-computer interaction and speech processing capabilities. We introduce a\\nnovel deep-learning architecture designed specifically for the functional data\\nmodel known as the multiple-index functional model. Our key innovation lies in\\nintegrating adaptive basis layers and an automated data transformation search\\nwithin the deep learning framework. Simulations for this new model show good\\nperformances. This allows us to extract features tailored for chunk-level SER,\\nbased on Mel Frequency Cepstral Coefficients (MFCCs). We demonstrate the\\neffectiveness of our approach on the benchmark IEMOCAP database, achieving good\\nperformance compared to existing methods.\",\"PeriodicalId\":501178,\"journal\":{\"name\":\"arXiv - CS - Sound\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Sound\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.17562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Sound","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.17562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

语音情感识别(SER)在提高人机交互和语音处理能力方面发挥着至关重要的作用。我们引入了一种专为函数数据模型设计的高级深度学习架构,即多索引函数模型。我们的关键创新在于在深度学习框架中集成了自适应基础层和自动数据转换搜索。对这一新模型的模拟显示了良好的性能。这使我们能够基于梅尔频率倒频谱系数(MFCC),提取为块级 SER 量身定制的特征。我们在基准 IEMOCAP 数据库上演示了我们的方法的有效性,与现有方法相比取得了良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep functional multiple index models with an application to SER
Speech Emotion Recognition (SER) plays a crucial role in advancing human-computer interaction and speech processing capabilities. We introduce a novel deep-learning architecture designed specifically for the functional data model known as the multiple-index functional model. Our key innovation lies in integrating adaptive basis layers and an automated data transformation search within the deep learning framework. Simulations for this new model show good performances. This allows us to extract features tailored for chunk-level SER, based on Mel Frequency Cepstral Coefficients (MFCCs). We demonstrate the effectiveness of our approach on the benchmark IEMOCAP database, achieving good performance compared to existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Explaining Deep Learning Embeddings for Speech Emotion Recognition by Predicting Interpretable Acoustic Features ESPnet-EZ: Python-only ESPnet for Easy Fine-tuning and Integration Prevailing Research Areas for Music AI in the Era of Foundation Models Egocentric Speaker Classification in Child-Adult Dyadic Interactions: From Sensing to Computational Modeling The T05 System for The VoiceMOS Challenge 2024: Transfer Learning from Deep Image Classifier to Naturalness MOS Prediction of High-Quality Synthetic Speech
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1