深度伪造环境音频的检测

Hafsa Ouajdi, Oussama Hadder, Modan Tailleur, Mathieu Lagrange, Laurie M. Heller
{"title":"深度伪造环境音频的检测","authors":"Hafsa Ouajdi, Oussama Hadder, Modan Tailleur, Mathieu Lagrange, Laurie M. Heller","doi":"arxiv-2403.17529","DOIUrl":null,"url":null,"abstract":"With the ever-rising quality of deep generative models, it is increasingly\nimportant to be able to discern whether the audio data at hand have been\nrecorded or synthesized. Although the detection of fake speech signals has been\nstudied extensively, this is not the case for the detection of fake\nenvironmental audio. We propose a simple and efficient pipeline for detecting fake environmental\nsounds based on the CLAP audio embedding. We evaluate this detector using audio\ndata from the 2023 DCASE challenge task on Foley sound synthesis. Our experiments show that fake sounds generated by 44 state-of-the-art\nsynthesizers can be detected on average with 98% accuracy. We show that using\nan audio embedding learned on environmental audio is beneficial over a standard\nVGGish one as it provides a 10% increase in detection performance. Informal\nlistening to Incorrect Negative examples demonstrates audible features of fake\nsounds missed by the detector such as distortion and implausible background\nnoise.","PeriodicalId":501178,"journal":{"name":"arXiv - CS - Sound","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of Deepfake Environmental Audio\",\"authors\":\"Hafsa Ouajdi, Oussama Hadder, Modan Tailleur, Mathieu Lagrange, Laurie M. Heller\",\"doi\":\"arxiv-2403.17529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the ever-rising quality of deep generative models, it is increasingly\\nimportant to be able to discern whether the audio data at hand have been\\nrecorded or synthesized. Although the detection of fake speech signals has been\\nstudied extensively, this is not the case for the detection of fake\\nenvironmental audio. We propose a simple and efficient pipeline for detecting fake environmental\\nsounds based on the CLAP audio embedding. We evaluate this detector using audio\\ndata from the 2023 DCASE challenge task on Foley sound synthesis. Our experiments show that fake sounds generated by 44 state-of-the-art\\nsynthesizers can be detected on average with 98% accuracy. We show that using\\nan audio embedding learned on environmental audio is beneficial over a standard\\nVGGish one as it provides a 10% increase in detection performance. Informal\\nlistening to Incorrect Negative examples demonstrates audible features of fake\\nsounds missed by the detector such as distortion and implausible background\\nnoise.\",\"PeriodicalId\":501178,\"journal\":{\"name\":\"arXiv - CS - Sound\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Sound\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.17529\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Sound","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.17529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着深度生成模型质量的不断提高,能够辨别手头的音频数据是录制的还是合成的变得越来越重要。虽然假语音信号的检测已经得到了广泛的研究,但假环境音频的检测却并非如此。我们提出了一种基于 CLAP 音频嵌入的简单高效的假环境音检测方法。我们使用 2023 年 DCASE 挑战任务中关于 Foley 声音合成的音频数据对该检测器进行了评估。实验结果表明,由 44 种最先进合成器生成的虚假声音的平均检测准确率为 98%。我们的实验表明,使用从环境音频中学到的音频嵌入比标准的 VGGish 音频嵌入更有优势,因为它能将检测性能提高 10%。对不正确的负面示例进行的信息监听展示了检测器所遗漏的假声音的可听特征,如失真和难以置信的背景噪音。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection of Deepfake Environmental Audio
With the ever-rising quality of deep generative models, it is increasingly important to be able to discern whether the audio data at hand have been recorded or synthesized. Although the detection of fake speech signals has been studied extensively, this is not the case for the detection of fake environmental audio. We propose a simple and efficient pipeline for detecting fake environmental sounds based on the CLAP audio embedding. We evaluate this detector using audio data from the 2023 DCASE challenge task on Foley sound synthesis. Our experiments show that fake sounds generated by 44 state-of-the-art synthesizers can be detected on average with 98% accuracy. We show that using an audio embedding learned on environmental audio is beneficial over a standard VGGish one as it provides a 10% increase in detection performance. Informal listening to Incorrect Negative examples demonstrates audible features of fake sounds missed by the detector such as distortion and implausible background noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Explaining Deep Learning Embeddings for Speech Emotion Recognition by Predicting Interpretable Acoustic Features ESPnet-EZ: Python-only ESPnet for Easy Fine-tuning and Integration Prevailing Research Areas for Music AI in the Era of Foundation Models Egocentric Speaker Classification in Child-Adult Dyadic Interactions: From Sensing to Computational Modeling The T05 System for The VoiceMOS Challenge 2024: Transfer Learning from Deep Image Classifier to Naturalness MOS Prediction of High-Quality Synthetic Speech
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1