合成声景:利用文本到音频模型进行环境声音分类

Francesca Ronchini, Luca Comanducci, Fabio Antonacci
{"title":"合成声景:利用文本到音频模型进行环境声音分类","authors":"Francesca Ronchini, Luca Comanducci, Fabio Antonacci","doi":"arxiv-2403.17864","DOIUrl":null,"url":null,"abstract":"In the past few years, text-to-audio models have emerged as a significant\nadvancement in automatic audio generation. Although they represent impressive\ntechnological progress, the effectiveness of their use in the development of\naudio applications remains uncertain. This paper aims to investigate these\naspects, specifically focusing on the task of classification of environmental\nsounds. This study analyzes the performance of two different environmental\nclassification systems when data generated from text-to-audio models is used\nfor training. Two cases are considered: a) when the training dataset is\naugmented by data coming from two different text-to-audio models; and b) when\nthe training dataset consists solely of synthetic audio generated. In both\ncases, the performance of the classification task is tested on real data.\nResults indicate that text-to-audio models are effective for dataset\naugmentation, whereas the performance of the models drops when relying on only\ngenerated audio.","PeriodicalId":501178,"journal":{"name":"arXiv - CS - Sound","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesizing Soundscapes: Leveraging Text-to-Audio Models for Environmental Sound Classification\",\"authors\":\"Francesca Ronchini, Luca Comanducci, Fabio Antonacci\",\"doi\":\"arxiv-2403.17864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the past few years, text-to-audio models have emerged as a significant\\nadvancement in automatic audio generation. Although they represent impressive\\ntechnological progress, the effectiveness of their use in the development of\\naudio applications remains uncertain. This paper aims to investigate these\\naspects, specifically focusing on the task of classification of environmental\\nsounds. This study analyzes the performance of two different environmental\\nclassification systems when data generated from text-to-audio models is used\\nfor training. Two cases are considered: a) when the training dataset is\\naugmented by data coming from two different text-to-audio models; and b) when\\nthe training dataset consists solely of synthetic audio generated. In both\\ncases, the performance of the classification task is tested on real data.\\nResults indicate that text-to-audio models are effective for dataset\\naugmentation, whereas the performance of the models drops when relying on only\\ngenerated audio.\",\"PeriodicalId\":501178,\"journal\":{\"name\":\"arXiv - CS - Sound\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Sound\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.17864\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Sound","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.17864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过去几年中,文本到音频模型已成为自动音频生成领域的一大进步。虽然它们代表了令人印象深刻的技术进步,但在音频应用开发中的使用效果仍不确定。本文旨在研究这些方面,特别关注环境声音的分类任务。本研究分析了两种不同的环境分类系统在使用文本到音频模型生成的数据进行训练时的性能。研究考虑了两种情况:a)训练数据集由来自两种不同文本到音频模型的数据进行增强;b)训练数据集仅由合成音频生成。在这两种情况下,分类任务的性能都在真实数据上进行了测试。结果表明,文本到音频模型对数据扩充很有效,而仅依赖于生成的音频时,模型的性能会下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesizing Soundscapes: Leveraging Text-to-Audio Models for Environmental Sound Classification
In the past few years, text-to-audio models have emerged as a significant advancement in automatic audio generation. Although they represent impressive technological progress, the effectiveness of their use in the development of audio applications remains uncertain. This paper aims to investigate these aspects, specifically focusing on the task of classification of environmental sounds. This study analyzes the performance of two different environmental classification systems when data generated from text-to-audio models is used for training. Two cases are considered: a) when the training dataset is augmented by data coming from two different text-to-audio models; and b) when the training dataset consists solely of synthetic audio generated. In both cases, the performance of the classification task is tested on real data. Results indicate that text-to-audio models are effective for dataset augmentation, whereas the performance of the models drops when relying on only generated audio.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Explaining Deep Learning Embeddings for Speech Emotion Recognition by Predicting Interpretable Acoustic Features ESPnet-EZ: Python-only ESPnet for Easy Fine-tuning and Integration Prevailing Research Areas for Music AI in the Era of Foundation Models Egocentric Speaker Classification in Child-Adult Dyadic Interactions: From Sensing to Computational Modeling The T05 System for The VoiceMOS Challenge 2024: Transfer Learning from Deep Image Classifier to Naturalness MOS Prediction of High-Quality Synthetic Speech
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1