Yanxing Wang, Hui Wan, Cody Barka, Tie Wei, Fangjun Shu
{"title":"多分散球形颗粒扩散控制溶解的准稳态建模和表征,II:表征","authors":"Yanxing Wang, Hui Wan, Cody Barka, Tie Wei, Fangjun Shu","doi":"10.1098/rspa.2023.0768","DOIUrl":null,"url":null,"abstract":"<p>A quasi-steady-state model for accurately predicting the detailed diffusion-dominated dissolution process of polydisperse spheroidal (prolate, oblate and spherical) particle systems was presented in Part I of this study. In the present paper, the dissolution characteristics of typical polydisperse spheroidal particle systems have been extensively investigated. The effects of the distributions of particle size and shape have been studied by examining the detailed dissolution processes, such as the size reduction rates of individual particles, the increase in bulk concentration and the dissolution time of the polydisperse systems. Some important factors controlling the dissolution process, including initial particle concentration, smallest and largest particle sizes, and the smallest and largest Taylor shape parameters, have been identified.</p>","PeriodicalId":20716,"journal":{"name":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quasi-steady-state modelling and characterization of diffusion-controlled dissolution from polydisperse spheroidal particles, II: characterization\",\"authors\":\"Yanxing Wang, Hui Wan, Cody Barka, Tie Wei, Fangjun Shu\",\"doi\":\"10.1098/rspa.2023.0768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A quasi-steady-state model for accurately predicting the detailed diffusion-dominated dissolution process of polydisperse spheroidal (prolate, oblate and spherical) particle systems was presented in Part I of this study. In the present paper, the dissolution characteristics of typical polydisperse spheroidal particle systems have been extensively investigated. The effects of the distributions of particle size and shape have been studied by examining the detailed dissolution processes, such as the size reduction rates of individual particles, the increase in bulk concentration and the dissolution time of the polydisperse systems. Some important factors controlling the dissolution process, including initial particle concentration, smallest and largest particle sizes, and the smallest and largest Taylor shape parameters, have been identified.</p>\",\"PeriodicalId\":20716,\"journal\":{\"name\":\"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rspa.2023.0768\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rspa.2023.0768","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Quasi-steady-state modelling and characterization of diffusion-controlled dissolution from polydisperse spheroidal particles, II: characterization
A quasi-steady-state model for accurately predicting the detailed diffusion-dominated dissolution process of polydisperse spheroidal (prolate, oblate and spherical) particle systems was presented in Part I of this study. In the present paper, the dissolution characteristics of typical polydisperse spheroidal particle systems have been extensively investigated. The effects of the distributions of particle size and shape have been studied by examining the detailed dissolution processes, such as the size reduction rates of individual particles, the increase in bulk concentration and the dissolution time of the polydisperse systems. Some important factors controlling the dissolution process, including initial particle concentration, smallest and largest particle sizes, and the smallest and largest Taylor shape parameters, have been identified.
期刊介绍:
Proceedings A has an illustrious history of publishing pioneering and influential research articles across the entire range of the physical and mathematical sciences. These have included Maxwell"s electromagnetic theory, the Braggs" first account of X-ray crystallography, Dirac"s relativistic theory of the electron, and Watson and Crick"s detailed description of the structure of DNA.