Lauren Azevedo-Schmidt, Ellen D Currano, Regan E Dunn, Elizabeth Gjieli, Jarmila Pittermann, Emily Sessa, Jacquelyn L Gill
{"title":"蕨类植物是生物动荡后群落恢复的促进因素","authors":"Lauren Azevedo-Schmidt, Ellen D Currano, Regan E Dunn, Elizabeth Gjieli, Jarmila Pittermann, Emily Sessa, Jacquelyn L Gill","doi":"10.1093/biosci/biae022","DOIUrl":null,"url":null,"abstract":"The competitive success of ferns has been foundational to hypotheses about terrestrial recolonization following biotic upheaval, from wildfires to the Cretaceous–Paleogene asteroid impact (66 million years ago). Rapid fern recolonization in primary successional environments has been hypothesized to be driven by ferns’ high spore production and wind dispersal, with an emphasis on their competitive advantages as so-called disaster taxa. We propose that a competition-based view of ferns is outdated and in need of reexamination in light of growing research documenting the importance of positive interactions (i.e., facilitation) between ferns and other species. Here, we integrate fossil and modern perspectives on fern ecology to propose that ferns act as facilitators of community assemblage following biotic upheaval by stabilizing substrates, enhancing soil properties, and mediating competition. Our reframing of ferns as facilitators has broad implications for both community ecology and ecosystem recovery dynamics, because of ferns’ global distribution and habitat diversity.","PeriodicalId":9003,"journal":{"name":"BioScience","volume":"30 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ferns as facilitators of community recovery following biotic upheaval\",\"authors\":\"Lauren Azevedo-Schmidt, Ellen D Currano, Regan E Dunn, Elizabeth Gjieli, Jarmila Pittermann, Emily Sessa, Jacquelyn L Gill\",\"doi\":\"10.1093/biosci/biae022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The competitive success of ferns has been foundational to hypotheses about terrestrial recolonization following biotic upheaval, from wildfires to the Cretaceous–Paleogene asteroid impact (66 million years ago). Rapid fern recolonization in primary successional environments has been hypothesized to be driven by ferns’ high spore production and wind dispersal, with an emphasis on their competitive advantages as so-called disaster taxa. We propose that a competition-based view of ferns is outdated and in need of reexamination in light of growing research documenting the importance of positive interactions (i.e., facilitation) between ferns and other species. Here, we integrate fossil and modern perspectives on fern ecology to propose that ferns act as facilitators of community assemblage following biotic upheaval by stabilizing substrates, enhancing soil properties, and mediating competition. Our reframing of ferns as facilitators has broad implications for both community ecology and ecosystem recovery dynamics, because of ferns’ global distribution and habitat diversity.\",\"PeriodicalId\":9003,\"journal\":{\"name\":\"BioScience\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioScience\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/biosci/biae022\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioScience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/biosci/biae022","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Ferns as facilitators of community recovery following biotic upheaval
The competitive success of ferns has been foundational to hypotheses about terrestrial recolonization following biotic upheaval, from wildfires to the Cretaceous–Paleogene asteroid impact (66 million years ago). Rapid fern recolonization in primary successional environments has been hypothesized to be driven by ferns’ high spore production and wind dispersal, with an emphasis on their competitive advantages as so-called disaster taxa. We propose that a competition-based view of ferns is outdated and in need of reexamination in light of growing research documenting the importance of positive interactions (i.e., facilitation) between ferns and other species. Here, we integrate fossil and modern perspectives on fern ecology to propose that ferns act as facilitators of community assemblage following biotic upheaval by stabilizing substrates, enhancing soil properties, and mediating competition. Our reframing of ferns as facilitators has broad implications for both community ecology and ecosystem recovery dynamics, because of ferns’ global distribution and habitat diversity.
期刊介绍:
BioScience is a monthly journal that has been in publication since 1964. It provides readers with authoritative and current overviews of biological research. The journal is peer-reviewed and heavily cited, making it a reliable source for researchers, educators, and students. In addition to research articles, BioScience also covers topics such as biology education, public policy, history, and the fundamental principles of the biological sciences. This makes the content accessible to a wide range of readers. The journal includes professionally written feature articles that explore the latest advancements in biology. It also features discussions on professional issues, book reviews, news about the American Institute of Biological Sciences (AIBS), and columns on policy (Washington Watch) and education (Eye on Education).