Yongmo Park;Subhankar Pal;Aporva Amarnath;Karthik Swaminathan;Wei D. Lu;Alper Buyuktosunoglu;Pradip Bose
{"title":"DRAMATON: 用于大数理论变换的近 DRAM 加速器","authors":"Yongmo Park;Subhankar Pal;Aporva Amarnath;Karthik Swaminathan;Wei D. Lu;Alper Buyuktosunoglu;Pradip Bose","doi":"10.1109/LCA.2024.3381452","DOIUrl":null,"url":null,"abstract":"With the rising popularity of post-quantum cryptographic schemes, realizing practical implementations for real-world applications is still a major challenge. A major bottleneck in such schemes is the fetching and processing of large polynomials in the Number Theoretic Transform (NTT), which makes non Von Neumann paradigms, such as near-memory processing, a viable option. We, therefore, propose a novel near-DRAM NTT accelerator design, called \n<sc>Dramaton</small>\n. Additionally, we introduce a conflict-free mapping algorithm that enables \n<sc>Dramaton</small>\n to process large NTTs with minimal hardware overhead using a fixed-permutation network. \n<sc>Dramaton</small>\n achieves 5–207× speedup in latency over the state-of-the-art and 97× improvement in EDP over a recent near-memory NTT accelerator.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"23 1","pages":"108-111"},"PeriodicalIF":1.4000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dramaton: A Near-DRAM Accelerator for Large Number Theoretic Transforms\",\"authors\":\"Yongmo Park;Subhankar Pal;Aporva Amarnath;Karthik Swaminathan;Wei D. Lu;Alper Buyuktosunoglu;Pradip Bose\",\"doi\":\"10.1109/LCA.2024.3381452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rising popularity of post-quantum cryptographic schemes, realizing practical implementations for real-world applications is still a major challenge. A major bottleneck in such schemes is the fetching and processing of large polynomials in the Number Theoretic Transform (NTT), which makes non Von Neumann paradigms, such as near-memory processing, a viable option. We, therefore, propose a novel near-DRAM NTT accelerator design, called \\n<sc>Dramaton</small>\\n. Additionally, we introduce a conflict-free mapping algorithm that enables \\n<sc>Dramaton</small>\\n to process large NTTs with minimal hardware overhead using a fixed-permutation network. \\n<sc>Dramaton</small>\\n achieves 5–207× speedup in latency over the state-of-the-art and 97× improvement in EDP over a recent near-memory NTT accelerator.\",\"PeriodicalId\":51248,\"journal\":{\"name\":\"IEEE Computer Architecture Letters\",\"volume\":\"23 1\",\"pages\":\"108-111\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Computer Architecture Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10482853/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Architecture Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10482853/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Dramaton: A Near-DRAM Accelerator for Large Number Theoretic Transforms
With the rising popularity of post-quantum cryptographic schemes, realizing practical implementations for real-world applications is still a major challenge. A major bottleneck in such schemes is the fetching and processing of large polynomials in the Number Theoretic Transform (NTT), which makes non Von Neumann paradigms, such as near-memory processing, a viable option. We, therefore, propose a novel near-DRAM NTT accelerator design, called
Dramaton
. Additionally, we introduce a conflict-free mapping algorithm that enables
Dramaton
to process large NTTs with minimal hardware overhead using a fixed-permutation network.
Dramaton
achieves 5–207× speedup in latency over the state-of-the-art and 97× improvement in EDP over a recent near-memory NTT accelerator.
期刊介绍:
IEEE Computer Architecture Letters is a rigorously peer-reviewed forum for publishing early, high-impact results in the areas of uni- and multiprocessor computer systems, computer architecture, microarchitecture, workload characterization, performance evaluation and simulation techniques, and power-aware computing. Submissions are welcomed on any topic in computer architecture, especially but not limited to: microprocessor and multiprocessor systems, microarchitecture and ILP processors, workload characterization, performance evaluation and simulation techniques, compiler-hardware and operating system-hardware interactions, interconnect architectures, memory and cache systems, power and thermal issues at the architecture level, I/O architectures and techniques, independent validation of previously published results, analysis of unsuccessful techniques, domain-specific processor architectures (e.g., embedded, graphics, network, etc.), real-time and high-availability architectures, reconfigurable systems.