Daniel Kowalczyk, Roel Leus, Christopher Hojny, Stefan Røpke
{"title":"基于流程的并行机调度公式(使用决策图","authors":"Daniel Kowalczyk, Roel Leus, Christopher Hojny, Stefan Røpke","doi":"10.1287/ijoc.2022.0301","DOIUrl":null,"url":null,"abstract":"<p>We present a new flow-based formulation for identical parallel machine scheduling with a regular objective function and without idle time. The formulation is constructed with the help of a decision diagram that represents all job sequences that respect specific ordering rules. These rules rely on a partition of the planning horizon into, generally nonuniform, periods and do not exclude all optimal solutions, but they constrain solutions to adhere to a canonical form. The new formulation has numerous variables and constraints, and hence we apply a Dantzig-Wolfe decomposition to compute the linear programming relaxation in reasonable time; the resulting lower bound is stronger than the bound from the classical time-indexed formulation. We develop a branch-and-price framework that solves three instances from the literature for the first time. We compare the new formulation with the time-indexed and arc time–indexed formulation by means of a series of computational experiments.</p><p><b>History:</b> Accepted by Andrea Lodi, Area Editor for Design & Analysis of Algorithms—Discrete.</p><p><b>Funding:</b> This work was partially funded by the European Union’s Horizon 2020 research and innovation program under [Marie Skłodowska-Curie Grant 754462].</p><p><b>Supplemental Material:</b> The software that supports the findings of this study is available within the paper and its Supplemental Information (https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2022.0301) as well as from the IJOC GitHub software repository (https://github.com/INFORMSJoC/2022.0301). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/.</p>","PeriodicalId":13620,"journal":{"name":"Informs Journal on Computing","volume":"31 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Flow-Based Formulation for Parallel Machine Scheduling Using Decision Diagrams\",\"authors\":\"Daniel Kowalczyk, Roel Leus, Christopher Hojny, Stefan Røpke\",\"doi\":\"10.1287/ijoc.2022.0301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present a new flow-based formulation for identical parallel machine scheduling with a regular objective function and without idle time. The formulation is constructed with the help of a decision diagram that represents all job sequences that respect specific ordering rules. These rules rely on a partition of the planning horizon into, generally nonuniform, periods and do not exclude all optimal solutions, but they constrain solutions to adhere to a canonical form. The new formulation has numerous variables and constraints, and hence we apply a Dantzig-Wolfe decomposition to compute the linear programming relaxation in reasonable time; the resulting lower bound is stronger than the bound from the classical time-indexed formulation. We develop a branch-and-price framework that solves three instances from the literature for the first time. We compare the new formulation with the time-indexed and arc time–indexed formulation by means of a series of computational experiments.</p><p><b>History:</b> Accepted by Andrea Lodi, Area Editor for Design & Analysis of Algorithms—Discrete.</p><p><b>Funding:</b> This work was partially funded by the European Union’s Horizon 2020 research and innovation program under [Marie Skłodowska-Curie Grant 754462].</p><p><b>Supplemental Material:</b> The software that supports the findings of this study is available within the paper and its Supplemental Information (https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2022.0301) as well as from the IJOC GitHub software repository (https://github.com/INFORMSJoC/2022.0301). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/.</p>\",\"PeriodicalId\":13620,\"journal\":{\"name\":\"Informs Journal on Computing\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informs Journal on Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1287/ijoc.2022.0301\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informs Journal on Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1287/ijoc.2022.0301","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A Flow-Based Formulation for Parallel Machine Scheduling Using Decision Diagrams
We present a new flow-based formulation for identical parallel machine scheduling with a regular objective function and without idle time. The formulation is constructed with the help of a decision diagram that represents all job sequences that respect specific ordering rules. These rules rely on a partition of the planning horizon into, generally nonuniform, periods and do not exclude all optimal solutions, but they constrain solutions to adhere to a canonical form. The new formulation has numerous variables and constraints, and hence we apply a Dantzig-Wolfe decomposition to compute the linear programming relaxation in reasonable time; the resulting lower bound is stronger than the bound from the classical time-indexed formulation. We develop a branch-and-price framework that solves three instances from the literature for the first time. We compare the new formulation with the time-indexed and arc time–indexed formulation by means of a series of computational experiments.
History: Accepted by Andrea Lodi, Area Editor for Design & Analysis of Algorithms—Discrete.
Funding: This work was partially funded by the European Union’s Horizon 2020 research and innovation program under [Marie Skłodowska-Curie Grant 754462].
Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information (https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2022.0301) as well as from the IJOC GitHub software repository (https://github.com/INFORMSJoC/2022.0301). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/.
期刊介绍:
The INFORMS Journal on Computing (JOC) is a quarterly that publishes papers in the intersection of operations research (OR) and computer science (CS). Most papers contain original research, but we also welcome special papers in a variety of forms, including Feature Articles on timely topics, Expository Reviews making a comprehensive survey and evaluation of a subject area, and State-of-the-Art Reviews that collect and integrate recent streams of research.