利用废蘑菇基质提取物生物合成抗茄科拉氏菌的高抗菌性氯化银纳米粒子

Wenjing Mo, Chunmei Yao, Hongsen Chen, Aisha Khalfan Nassor, Fangze Gui, Ciqing Hong, Tianpei Huang, Xiong Guan, Lei Xu, Xiaohong Pan
{"title":"利用废蘑菇基质提取物生物合成抗茄科拉氏菌的高抗菌性氯化银纳米粒子","authors":"Wenjing Mo, Chunmei Yao, Hongsen Chen, Aisha Khalfan Nassor, Fangze Gui, Ciqing Hong, Tianpei Huang, Xiong Guan, Lei Xu, Xiaohong Pan","doi":"10.1088/2632-959x/ad2b81","DOIUrl":null,"url":null,"abstract":"In this study, a green and highly efficient method was proposed to synthesize nano-silver chloride (nano-AgCl) using spent mushroom substrate (SMS) extract as a cheap reactant. Nanoparticles were characterized by a series of techniques like x-ray diffraction (XRD), energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), which showed the formation of near-spherical silver chloride nanoparticles with an average size of about 8.30 nm. Notably, the synthesized nano-silver chloride has a more prominent antibacterial effect against <italic toggle=\"yes\">Ralstonia solanacearum</italic> (EC<sub>50</sub> = 5.18 mg L<sup>−1</sup>) than non-nano-sized silver chloride particles, nano-silver chloride synthesized by chemical method, and commercial pesticides. In-depth, the study of the mechanism revealed that nano-silver chloride could cause cell membrane disruption, DNA damage and intracellular generation of reactive oxygen species (·OH, ·O<sup>2−</sup> and <sup>1</sup>O<sub>2</sub>), leading to peroxidation damage in <italic toggle=\"yes\">Ralstonia solanacearum</italic> (<italic toggle=\"yes\">R. solanacearum</italic>). Moreover, the reaction between nano-silver chloride and bacteria could be driven by intermolecular forces instead of electrostatic interactions. Our study provides a new approach to synthesizing nano-silver chloride as a highly efficient antibacterial agent and broadens the utilization of agricultural waste spent mushroom substrate.","PeriodicalId":501827,"journal":{"name":"Nano Express","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biosynthesis of high antibacterial silver chloride nanoparticles against Ralstonia solanacearum using spent mushroom substrate extract\",\"authors\":\"Wenjing Mo, Chunmei Yao, Hongsen Chen, Aisha Khalfan Nassor, Fangze Gui, Ciqing Hong, Tianpei Huang, Xiong Guan, Lei Xu, Xiaohong Pan\",\"doi\":\"10.1088/2632-959x/ad2b81\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a green and highly efficient method was proposed to synthesize nano-silver chloride (nano-AgCl) using spent mushroom substrate (SMS) extract as a cheap reactant. Nanoparticles were characterized by a series of techniques like x-ray diffraction (XRD), energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), which showed the formation of near-spherical silver chloride nanoparticles with an average size of about 8.30 nm. Notably, the synthesized nano-silver chloride has a more prominent antibacterial effect against <italic toggle=\\\"yes\\\">Ralstonia solanacearum</italic> (EC<sub>50</sub> = 5.18 mg L<sup>−1</sup>) than non-nano-sized silver chloride particles, nano-silver chloride synthesized by chemical method, and commercial pesticides. In-depth, the study of the mechanism revealed that nano-silver chloride could cause cell membrane disruption, DNA damage and intracellular generation of reactive oxygen species (·OH, ·O<sup>2−</sup> and <sup>1</sup>O<sub>2</sub>), leading to peroxidation damage in <italic toggle=\\\"yes\\\">Ralstonia solanacearum</italic> (<italic toggle=\\\"yes\\\">R. solanacearum</italic>). Moreover, the reaction between nano-silver chloride and bacteria could be driven by intermolecular forces instead of electrostatic interactions. Our study provides a new approach to synthesizing nano-silver chloride as a highly efficient antibacterial agent and broadens the utilization of agricultural waste spent mushroom substrate.\",\"PeriodicalId\":501827,\"journal\":{\"name\":\"Nano Express\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2632-959x/ad2b81\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-959x/ad2b81","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种利用废蘑菇基质(SMS)提取物作为廉价反应物合成纳米氯化银(nano-AgCl)的绿色高效方法。通过 X 射线衍射 (XRD)、能量色散光谱 (EDS)、扫描电子显微镜 (SEM) 和透射电子显微镜 (TEM) 等一系列技术对纳米颗粒进行了表征,结果显示形成了平均尺寸约为 8.30 nm 的近球形纳米氯化银颗粒。值得注意的是,与非纳米尺寸的氯化银颗粒、化学方法合成的纳米氯化银以及商业杀虫剂相比,合成的纳米氯化银对茄腐镰刀菌(Ralstonia solanacearum)的抗菌效果更为显著(EC50 = 5.18 mg L-1)。对其作用机理的深入研究表明,纳米氯化银可导致细胞膜破坏、DNA 损伤和细胞内活性氧(-OH、-O2- 和 1O2)的生成,从而导致茄果冻酵母菌(R. solanacearum)过氧化损伤。此外,纳米氯化银与细菌之间的反应可能是由分子间作用力而非静电相互作用驱动的。我们的研究为合成纳米氯化银这种高效抗菌剂提供了一种新方法,并拓宽了农业废弃物废蘑菇基质的利用途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biosynthesis of high antibacterial silver chloride nanoparticles against Ralstonia solanacearum using spent mushroom substrate extract
In this study, a green and highly efficient method was proposed to synthesize nano-silver chloride (nano-AgCl) using spent mushroom substrate (SMS) extract as a cheap reactant. Nanoparticles were characterized by a series of techniques like x-ray diffraction (XRD), energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), which showed the formation of near-spherical silver chloride nanoparticles with an average size of about 8.30 nm. Notably, the synthesized nano-silver chloride has a more prominent antibacterial effect against Ralstonia solanacearum (EC50 = 5.18 mg L−1) than non-nano-sized silver chloride particles, nano-silver chloride synthesized by chemical method, and commercial pesticides. In-depth, the study of the mechanism revealed that nano-silver chloride could cause cell membrane disruption, DNA damage and intracellular generation of reactive oxygen species (·OH, ·O2− and 1O2), leading to peroxidation damage in Ralstonia solanacearum (R. solanacearum). Moreover, the reaction between nano-silver chloride and bacteria could be driven by intermolecular forces instead of electrostatic interactions. Our study provides a new approach to synthesizing nano-silver chloride as a highly efficient antibacterial agent and broadens the utilization of agricultural waste spent mushroom substrate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesis, characterization and magneto-structural properties of geometrical and compositional modulated nanowires A comparative study of broadband PbS quantum dots/graphene photodetectors with monolayer and bilayer graphene Occurrence of the collective Ziman limit of heat transport in cubic semiconductors Si, Ge, AlAs and AlP: scattering channels and size effects Structure and optical properties of ZnxCd1-xS and Cu:ZnxCd1-xS templated on DNA molecules Lycium ruthenicum stem extract mediated green synthesis of MnO2/Mn3(PO4)2 composite nanowire electrocatalyst for oxygen evolution reaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1