{"title":"用频域理论想象红外+紫外共旋转圆形激光场中分子轨道的密度分布","authors":"Yu-Hong Li, Facheng Jin, Yujun Yang, Fei Li, Ying-Chun Guo, Zhi-Yi Wei, Jing Chen, Xiaojun Liu, Bingbing Wang","doi":"10.1088/1361-6455/ad31b0","DOIUrl":null,"url":null,"abstract":"We have investigated the angle-resolved ATI spectrum of oriented molecules in the IR+XUV co-rotating circular laser fields. According to the different roles of IR and XUV laser in the ionization process, we purposefully adjust the photon energy of XUV and the intensity of IR laser to make the ionization spectrum of the molecule distributed in a suitable momentum region. Moreover, under the same laser conditions, the background fringes in the ionization spectrum of the molecule can be removed by using the ionization spectrum of the atom with the same ionization energy as the molecule, so that the molecular orbital density distribution in the suitable momentum region can be obtained. That is, for any unknown molecule, as long as the ionization energy of the molecule can be measured, the density distribution of the molecular orbital can be imaged in a definite momentum region by adjusting the laser field conditions, which may shed light on the experimental detection of molecular orbitals.","PeriodicalId":16826,"journal":{"name":"Journal of Physics B: Atomic, Molecular and Optical Physics","volume":"26 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Imagining density distribution of molecular orbitals in IR+XUV co-rotating circular laser fields by frequency-domain theory\",\"authors\":\"Yu-Hong Li, Facheng Jin, Yujun Yang, Fei Li, Ying-Chun Guo, Zhi-Yi Wei, Jing Chen, Xiaojun Liu, Bingbing Wang\",\"doi\":\"10.1088/1361-6455/ad31b0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have investigated the angle-resolved ATI spectrum of oriented molecules in the IR+XUV co-rotating circular laser fields. According to the different roles of IR and XUV laser in the ionization process, we purposefully adjust the photon energy of XUV and the intensity of IR laser to make the ionization spectrum of the molecule distributed in a suitable momentum region. Moreover, under the same laser conditions, the background fringes in the ionization spectrum of the molecule can be removed by using the ionization spectrum of the atom with the same ionization energy as the molecule, so that the molecular orbital density distribution in the suitable momentum region can be obtained. That is, for any unknown molecule, as long as the ionization energy of the molecule can be measured, the density distribution of the molecular orbital can be imaged in a definite momentum region by adjusting the laser field conditions, which may shed light on the experimental detection of molecular orbitals.\",\"PeriodicalId\":16826,\"journal\":{\"name\":\"Journal of Physics B: Atomic, Molecular and Optical Physics\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics B: Atomic, Molecular and Optical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6455/ad31b0\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics B: Atomic, Molecular and Optical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6455/ad31b0","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
Imagining density distribution of molecular orbitals in IR+XUV co-rotating circular laser fields by frequency-domain theory
We have investigated the angle-resolved ATI spectrum of oriented molecules in the IR+XUV co-rotating circular laser fields. According to the different roles of IR and XUV laser in the ionization process, we purposefully adjust the photon energy of XUV and the intensity of IR laser to make the ionization spectrum of the molecule distributed in a suitable momentum region. Moreover, under the same laser conditions, the background fringes in the ionization spectrum of the molecule can be removed by using the ionization spectrum of the atom with the same ionization energy as the molecule, so that the molecular orbital density distribution in the suitable momentum region can be obtained. That is, for any unknown molecule, as long as the ionization energy of the molecule can be measured, the density distribution of the molecular orbital can be imaged in a definite momentum region by adjusting the laser field conditions, which may shed light on the experimental detection of molecular orbitals.
期刊介绍:
Published twice-monthly (24 issues per year), Journal of Physics B: Atomic, Molecular and Optical Physics covers the study of atoms, ions, molecules and clusters, and their structure and interactions with particles, photons or fields. The journal also publishes articles dealing with those aspects of spectroscopy, quantum optics and non-linear optics, laser physics, astrophysics, plasma physics, chemical physics, optical cooling and trapping and other investigations where the objects of study are the elementary atomic, ionic or molecular properties of processes.