从光电子动量分布检索分子中随时间变化的键长的卷积神经网络

IF 1.5 4区 物理与天体物理 Q3 OPTICS Journal of Physics B: Atomic, Molecular and Optical Physics Pub Date : 2024-03-06 DOI:10.1088/1361-6455/ad2e30
N I Shvetsov-Shilovski, M Lein
{"title":"从光电子动量分布检索分子中随时间变化的键长的卷积神经网络","authors":"N I Shvetsov-Shilovski, M Lein","doi":"10.1088/1361-6455/ad2e30","DOIUrl":null,"url":null,"abstract":"We apply deep learning for retrieval of the time-dependent bond length in the dissociating two-dimensional H<inline-formula>\n<tex-math><?CDATA $_2^{+}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:msubsup><mml:mi></mml:mi><mml:mn>2</mml:mn><mml:mrow><mml:mo>+</mml:mo></mml:mrow></mml:msubsup></mml:math>\n<inline-graphic xlink:href=\"bad2e30ieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> molecule using photoelectron momentum distributions. We consider a pump-probe scheme and calculate electron momentum distributions from strong-field ionization by treating the motion of the nuclei classically, semiclassically or quantum mechanically. A convolutional neural network trained on momentum distributions obtained at fixed internuclear distances retrieves the time-varying bond length with an absolute error of 0.2–0.3 a.u.","PeriodicalId":16826,"journal":{"name":"Journal of Physics B: Atomic, Molecular and Optical Physics","volume":"44 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convolutional neural network for retrieval of the time-dependent bond length in a molecule from photoelectron momentum distributions\",\"authors\":\"N I Shvetsov-Shilovski, M Lein\",\"doi\":\"10.1088/1361-6455/ad2e30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We apply deep learning for retrieval of the time-dependent bond length in the dissociating two-dimensional H<inline-formula>\\n<tex-math><?CDATA $_2^{+}$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:msubsup><mml:mi></mml:mi><mml:mn>2</mml:mn><mml:mrow><mml:mo>+</mml:mo></mml:mrow></mml:msubsup></mml:math>\\n<inline-graphic xlink:href=\\\"bad2e30ieqn1.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> molecule using photoelectron momentum distributions. We consider a pump-probe scheme and calculate electron momentum distributions from strong-field ionization by treating the motion of the nuclei classically, semiclassically or quantum mechanically. A convolutional neural network trained on momentum distributions obtained at fixed internuclear distances retrieves the time-varying bond length with an absolute error of 0.2–0.3 a.u.\",\"PeriodicalId\":16826,\"journal\":{\"name\":\"Journal of Physics B: Atomic, Molecular and Optical Physics\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics B: Atomic, Molecular and Optical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6455/ad2e30\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics B: Atomic, Molecular and Optical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6455/ad2e30","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

我们应用深度学习,利用光电子动量分布检索解离二维 H2+ 分子中随时间变化的键长。我们考虑了泵探针方案,并通过经典、半经典或量子力学处理原子核运动来计算强场电离产生的电子动量分布。在固定核间距下获得的动量分布上训练的卷积神经网络可以检索出随时间变化的键长,绝对误差为 0.2-0.3 a.u。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Convolutional neural network for retrieval of the time-dependent bond length in a molecule from photoelectron momentum distributions
We apply deep learning for retrieval of the time-dependent bond length in the dissociating two-dimensional H 2+ molecule using photoelectron momentum distributions. We consider a pump-probe scheme and calculate electron momentum distributions from strong-field ionization by treating the motion of the nuclei classically, semiclassically or quantum mechanically. A convolutional neural network trained on momentum distributions obtained at fixed internuclear distances retrieves the time-varying bond length with an absolute error of 0.2–0.3 a.u.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
6.20%
发文量
182
审稿时长
2.8 months
期刊介绍: Published twice-monthly (24 issues per year), Journal of Physics B: Atomic, Molecular and Optical Physics covers the study of atoms, ions, molecules and clusters, and their structure and interactions with particles, photons or fields. The journal also publishes articles dealing with those aspects of spectroscopy, quantum optics and non-linear optics, laser physics, astrophysics, plasma physics, chemical physics, optical cooling and trapping and other investigations where the objects of study are the elementary atomic, ionic or molecular properties of processes.
期刊最新文献
X-ray circular dichroism measured by cross-polarization x-ray transient grating Toward a Mølmer Sørensen gate with .9999 fidelity Quantum states and spectra of small cylindrical and toroidal lattices Addendum: Multichannel quantum defect theory of strontium bound Rydberg states (2014 J. Phys. B: At. Mol. Opt. Phys. 47 155001) Absolute nuclear charge radius by Na-like spectral line separation in high-Z elements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1