利用 CFD 准维度模型研究船用二冲程发动机的清扫流动力学

IF 2.2 4区 工程技术 Q2 ENGINEERING, MECHANICAL International Journal of Engine Research Pub Date : 2024-03-27 DOI:10.1177/14680874241240193
Xiao Han, Dai Liu, Long Liu, Shiyi Fu
{"title":"利用 CFD 准维度模型研究船用二冲程发动机的清扫流动力学","authors":"Xiao Han, Dai Liu, Long Liu, Shiyi Fu","doi":"10.1177/14680874241240193","DOIUrl":null,"url":null,"abstract":"The complex in-cylinder gas state and flow significantly affect fuel-air mixture, combustion efficiency and emissions. However, the scavenging CFD model of large bore marine engines in digital twin system requires substantial computational resources. Therefore, a fast-run phenomenological model of the scavenging process is built in this study. The model simulates the thermal states and flow dynamics of inlet and exhaust gas based on the energy and momentum conservation principles, considering the ideal in-cylinder swirl velocity profile with effects of air mass loss, wall friction, and swirl shear. The model’s accuracy is confirmed by comparing it with CFD simulations on different engines, showing an average relative error less than 3.5%. It also analyzes the impacts of intake pressure. The model provides accurate boundary conditions for subsequent fuel spray, combustion, and emission simulations and can be combined with these models in the future, thereby applied to engine design, diagnostics, and control.","PeriodicalId":14034,"journal":{"name":"International Journal of Engine Research","volume":"14 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Scavenging Flow Dynamics of Marine Two-Stroke Engines With a CFD-Derived Quasi-Dimensional Model\",\"authors\":\"Xiao Han, Dai Liu, Long Liu, Shiyi Fu\",\"doi\":\"10.1177/14680874241240193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The complex in-cylinder gas state and flow significantly affect fuel-air mixture, combustion efficiency and emissions. However, the scavenging CFD model of large bore marine engines in digital twin system requires substantial computational resources. Therefore, a fast-run phenomenological model of the scavenging process is built in this study. The model simulates the thermal states and flow dynamics of inlet and exhaust gas based on the energy and momentum conservation principles, considering the ideal in-cylinder swirl velocity profile with effects of air mass loss, wall friction, and swirl shear. The model’s accuracy is confirmed by comparing it with CFD simulations on different engines, showing an average relative error less than 3.5%. It also analyzes the impacts of intake pressure. The model provides accurate boundary conditions for subsequent fuel spray, combustion, and emission simulations and can be combined with these models in the future, thereby applied to engine design, diagnostics, and control.\",\"PeriodicalId\":14034,\"journal\":{\"name\":\"International Journal of Engine Research\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engine Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/14680874241240193\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engine Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14680874241240193","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

复杂的气缸内气体状态和流动对燃料-空气混合物、燃烧效率和排放有重大影响。然而,数字孪生系统中大缸径船用发动机的清扫 CFD 模型需要大量的计算资源。因此,本研究建立了清扫过程的快速运行现象学模型。该模型基于能量和动量守恒原理,模拟了进气和排气的热状态和流动动力学,考虑了理想的气缸内漩涡速度曲线以及空气质量损失、壁面摩擦和漩涡剪切的影响。通过与不同发动机的 CFD 模拟进行比较,证实了该模型的准确性,显示平均相对误差小于 3.5%。它还分析了进气压力的影响。该模型为后续的燃料喷射、燃烧和排放模拟提供了精确的边界条件,并可在未来与这些模型相结合,从而应用于发动机设计、诊断和控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on Scavenging Flow Dynamics of Marine Two-Stroke Engines With a CFD-Derived Quasi-Dimensional Model
The complex in-cylinder gas state and flow significantly affect fuel-air mixture, combustion efficiency and emissions. However, the scavenging CFD model of large bore marine engines in digital twin system requires substantial computational resources. Therefore, a fast-run phenomenological model of the scavenging process is built in this study. The model simulates the thermal states and flow dynamics of inlet and exhaust gas based on the energy and momentum conservation principles, considering the ideal in-cylinder swirl velocity profile with effects of air mass loss, wall friction, and swirl shear. The model’s accuracy is confirmed by comparing it with CFD simulations on different engines, showing an average relative error less than 3.5%. It also analyzes the impacts of intake pressure. The model provides accurate boundary conditions for subsequent fuel spray, combustion, and emission simulations and can be combined with these models in the future, thereby applied to engine design, diagnostics, and control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Engine Research
International Journal of Engine Research 工程技术-工程:机械
CiteScore
6.50
自引率
16.00%
发文量
130
审稿时长
>12 weeks
期刊介绍: The International Journal of Engine Research publishes high quality papers on experimental and analytical studies of engine technology.
期刊最新文献
Development of a semi-empirical physical model for transient NOx emissions prediction from a high-speed diesel engine. Transient NOx emission modeling of a hydrogen-diesel engine using hybrid machine learning methods An efficient product design tool for aftertreatment system Computational investigation of a methanol compression ignition engine assisted by a glow plug A consistent model of the initiation, early expansion, and possible extinction of a spark-ignited flame kernel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1