{"title":"用于图像分割的包含局部信息的重构感知核化模糊聚类框架","authors":"Chengmao Wu, Xiao Qi","doi":"10.1007/s11063-024-11450-1","DOIUrl":null,"url":null,"abstract":"<p>Kernelized fuzzy C-means clustering with weighted local information is an extensively applied robust segmentation algorithm for noisy image. However, it is difficult to effectively solve the problem of segmenting image polluted by strong noise. To address this issue, a reconstruction-aware kernel fuzzy C-mean clustering with rich local information is proposed in this paper. Firstly, the optimization modeling of guided bilateral filtering is given for noisy image; Secondly, this filtering model is embedded into kernelized fuzzy C-means clustering with local information, and a novel reconstruction-filtering information driven fuzzy clustering model for noise-corrupted image segmentation is presented; Finally, a tri-level alternative and iterative algorithm is derived from optimizing model using optimization theory and its convergence is strictly analyzed. Many Experimental results on noisy synthetic images and actual images indicate that compared with the latest advanced fuzzy clustering-related algorithms, the algorithm presented in this paper has better segmentation performance and stronger robustness to noise, and its PSNR and ACC values increase by about 0.16–3.28 and 0.01–0.08 respectively.</p>","PeriodicalId":51144,"journal":{"name":"Neural Processing Letters","volume":"7 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reconstruction-Aware Kernelized Fuzzy Clustering Framework Incorporating Local Information for Image Segmentation\",\"authors\":\"Chengmao Wu, Xiao Qi\",\"doi\":\"10.1007/s11063-024-11450-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Kernelized fuzzy C-means clustering with weighted local information is an extensively applied robust segmentation algorithm for noisy image. However, it is difficult to effectively solve the problem of segmenting image polluted by strong noise. To address this issue, a reconstruction-aware kernel fuzzy C-mean clustering with rich local information is proposed in this paper. Firstly, the optimization modeling of guided bilateral filtering is given for noisy image; Secondly, this filtering model is embedded into kernelized fuzzy C-means clustering with local information, and a novel reconstruction-filtering information driven fuzzy clustering model for noise-corrupted image segmentation is presented; Finally, a tri-level alternative and iterative algorithm is derived from optimizing model using optimization theory and its convergence is strictly analyzed. Many Experimental results on noisy synthetic images and actual images indicate that compared with the latest advanced fuzzy clustering-related algorithms, the algorithm presented in this paper has better segmentation performance and stronger robustness to noise, and its PSNR and ACC values increase by about 0.16–3.28 and 0.01–0.08 respectively.</p>\",\"PeriodicalId\":51144,\"journal\":{\"name\":\"Neural Processing Letters\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Processing Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11063-024-11450-1\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11063-024-11450-1","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
摘要
具有加权局部信息的核化模糊 C-means 聚类是一种广泛应用于噪声图像的鲁棒分割算法。然而,它很难有效解决强噪声污染图像的分割问题。针对这一问题,本文提出了一种具有丰富局部信息的重构感知核模糊 C 均值聚类算法。首先,给出了针对噪声图像的引导双边滤波优化模型;其次,将该滤波模型嵌入到具有局部信息的核化模糊 C-means 聚类中,提出了一种新颖的用于噪声污染图像分割的重构-滤波信息驱动模糊聚类模型;最后,利用最优化理论从优化模型中推导出了一种三级替代和迭代算法,并对其收敛性进行了严格分析。在噪声合成图像和实际图像上的大量实验结果表明,与最新的先进模糊聚类相关算法相比,本文提出的算法具有更好的分割性能和更强的噪声鲁棒性,其PSNR和ACC值分别提高了约0.16-3.28和0.01-0.08。
Reconstruction-Aware Kernelized Fuzzy Clustering Framework Incorporating Local Information for Image Segmentation
Kernelized fuzzy C-means clustering with weighted local information is an extensively applied robust segmentation algorithm for noisy image. However, it is difficult to effectively solve the problem of segmenting image polluted by strong noise. To address this issue, a reconstruction-aware kernel fuzzy C-mean clustering with rich local information is proposed in this paper. Firstly, the optimization modeling of guided bilateral filtering is given for noisy image; Secondly, this filtering model is embedded into kernelized fuzzy C-means clustering with local information, and a novel reconstruction-filtering information driven fuzzy clustering model for noise-corrupted image segmentation is presented; Finally, a tri-level alternative and iterative algorithm is derived from optimizing model using optimization theory and its convergence is strictly analyzed. Many Experimental results on noisy synthetic images and actual images indicate that compared with the latest advanced fuzzy clustering-related algorithms, the algorithm presented in this paper has better segmentation performance and stronger robustness to noise, and its PSNR and ACC values increase by about 0.16–3.28 and 0.01–0.08 respectively.
期刊介绍:
Neural Processing Letters is an international journal publishing research results and innovative ideas on all aspects of artificial neural networks. Coverage includes theoretical developments, biological models, new formal modes, learning, applications, software and hardware developments, and prospective researches.
The journal promotes fast exchange of information in the community of neural network researchers and users. The resurgence of interest in the field of artificial neural networks since the beginning of the 1980s is coupled to tremendous research activity in specialized or multidisciplinary groups. Research, however, is not possible without good communication between people and the exchange of information, especially in a field covering such different areas; fast communication is also a key aspect, and this is the reason for Neural Processing Letters