{"title":"高斯过程模型的非均匀主动学习及其在轨迹信息空气动力学数据库中的应用","authors":"Kevin R. Quinlan, Jagadeesh Movva, Brad Perfect","doi":"10.1002/sam.11675","DOIUrl":null,"url":null,"abstract":"The ability to non‐uniformly weight the input space is desirable for many applications, and has been explored for space‐filling approaches. Increased interests in linking models, such as in a digital twinning framework, increases the need for sampling emulators where they are most likely to be evaluated. In particular, we apply non‐uniform sampling methods for the construction of aerodynamic databases. This paper combines non‐uniform weighting with active learning for Gaussian Processes (GPs) to develop a closed‐form solution to a non‐uniform active learning criterion. We accomplish this by utilizing a kernel density estimator as the weight function. We demonstrate the need and efficacy of this approach with an atmospheric entry example that accounts for both model uncertainty as well as the practical state space of the vehicle, as determined by forward modeling within the active learning loop.","PeriodicalId":48684,"journal":{"name":"Statistical Analysis and Data Mining","volume":"16 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non‐uniform active learning for Gaussian process models with applications to trajectory informed aerodynamic databases\",\"authors\":\"Kevin R. Quinlan, Jagadeesh Movva, Brad Perfect\",\"doi\":\"10.1002/sam.11675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ability to non‐uniformly weight the input space is desirable for many applications, and has been explored for space‐filling approaches. Increased interests in linking models, such as in a digital twinning framework, increases the need for sampling emulators where they are most likely to be evaluated. In particular, we apply non‐uniform sampling methods for the construction of aerodynamic databases. This paper combines non‐uniform weighting with active learning for Gaussian Processes (GPs) to develop a closed‐form solution to a non‐uniform active learning criterion. We accomplish this by utilizing a kernel density estimator as the weight function. We demonstrate the need and efficacy of this approach with an atmospheric entry example that accounts for both model uncertainty as well as the practical state space of the vehicle, as determined by forward modeling within the active learning loop.\",\"PeriodicalId\":48684,\"journal\":{\"name\":\"Statistical Analysis and Data Mining\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Analysis and Data Mining\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/sam.11675\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/sam.11675","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Non‐uniform active learning for Gaussian process models with applications to trajectory informed aerodynamic databases
The ability to non‐uniformly weight the input space is desirable for many applications, and has been explored for space‐filling approaches. Increased interests in linking models, such as in a digital twinning framework, increases the need for sampling emulators where they are most likely to be evaluated. In particular, we apply non‐uniform sampling methods for the construction of aerodynamic databases. This paper combines non‐uniform weighting with active learning for Gaussian Processes (GPs) to develop a closed‐form solution to a non‐uniform active learning criterion. We accomplish this by utilizing a kernel density estimator as the weight function. We demonstrate the need and efficacy of this approach with an atmospheric entry example that accounts for both model uncertainty as well as the practical state space of the vehicle, as determined by forward modeling within the active learning loop.
期刊介绍:
Statistical Analysis and Data Mining addresses the broad area of data analysis, including statistical approaches, machine learning, data mining, and applications. Topics include statistical and computational approaches for analyzing massive and complex datasets, novel statistical and/or machine learning methods and theory, and state-of-the-art applications with high impact. Of special interest are articles that describe innovative analytical techniques, and discuss their application to real problems, in such a way that they are accessible and beneficial to domain experts across science, engineering, and commerce.
The focus of the journal is on papers which satisfy one or more of the following criteria:
Solve data analysis problems associated with massive, complex datasets
Develop innovative statistical approaches, machine learning algorithms, or methods integrating ideas across disciplines, e.g., statistics, computer science, electrical engineering, operation research.
Formulate and solve high-impact real-world problems which challenge existing paradigms via new statistical and/or computational models
Provide survey to prominent research topics.