Lu Gao, Qi Wang, Min-Yi Li, Meng-Meng Zhang, Bin Wang, Tai-Wei Dong, Pei-Feng Wei, Min Li
{"title":"治疗心血管和肾脏疾病的机制。","authors":"Lu Gao, Qi Wang, Min-Yi Li, Meng-Meng Zhang, Bin Wang, Tai-Wei Dong, Pei-Feng Wei, Min Li","doi":"10.1097/FJC.0000000000001562","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>Cardiovascular disease (CVD) is the leading cause of morbidity and mortality globally. CVD and kidney disease are closely related, with kidney injury increasing CVD mortality. The pathogenesis of cardiovascular and renal diseases involves complex and diverse interactions between multiple extracellular and intracellular signaling molecules, among which transient receptor potential vanilloid 1 (TRPV1)/transient receptor potential ankyrin 1 (TRPA1) channels have received increasing attention. TRPV1 belongs to the vanilloid receptor subtype family of transient receptor potential ion channels, and TRPA1 belongs to the transient receptor potential channel superfamily. TRPV1/TRPA1 are jointly involved in the management of cardiovascular and renal diseases and play important roles in regulating vascular tension, promoting angiogenesis, antifibrosis, anti-inflammation, and antioxidation. The mechanism of TRPV1/TRPA1 is mainly related to regulation of intracellular calcium influx and release of nitric oxide and calcitonin gene-related peptide. Therefore, this study takes the TRPV1/TRPA1 channel as the research object, analyzes and summarizes the process and mechanism of TRPV1/TRPA1 affecting cardiovascular and renal diseases, and lays a foundation for the treatment of cardiorenal diseases.</p>","PeriodicalId":15212,"journal":{"name":"Journal of Cardiovascular Pharmacology","volume":" ","pages":"10-17"},"PeriodicalIF":2.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Mechanism for the Treatment of Cardiovascular and Renal Disease: TRPV1 and TRPA1.\",\"authors\":\"Lu Gao, Qi Wang, Min-Yi Li, Meng-Meng Zhang, Bin Wang, Tai-Wei Dong, Pei-Feng Wei, Min Li\",\"doi\":\"10.1097/FJC.0000000000001562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Abstract: </strong>Cardiovascular disease (CVD) is the leading cause of morbidity and mortality globally. CVD and kidney disease are closely related, with kidney injury increasing CVD mortality. The pathogenesis of cardiovascular and renal diseases involves complex and diverse interactions between multiple extracellular and intracellular signaling molecules, among which transient receptor potential vanilloid 1 (TRPV1)/transient receptor potential ankyrin 1 (TRPA1) channels have received increasing attention. TRPV1 belongs to the vanilloid receptor subtype family of transient receptor potential ion channels, and TRPA1 belongs to the transient receptor potential channel superfamily. TRPV1/TRPA1 are jointly involved in the management of cardiovascular and renal diseases and play important roles in regulating vascular tension, promoting angiogenesis, antifibrosis, anti-inflammation, and antioxidation. The mechanism of TRPV1/TRPA1 is mainly related to regulation of intracellular calcium influx and release of nitric oxide and calcitonin gene-related peptide. Therefore, this study takes the TRPV1/TRPA1 channel as the research object, analyzes and summarizes the process and mechanism of TRPV1/TRPA1 affecting cardiovascular and renal diseases, and lays a foundation for the treatment of cardiorenal diseases.</p>\",\"PeriodicalId\":15212,\"journal\":{\"name\":\"Journal of Cardiovascular Pharmacology\",\"volume\":\" \",\"pages\":\"10-17\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cardiovascular Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/FJC.0000000000001562\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/FJC.0000000000001562","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
A Mechanism for the Treatment of Cardiovascular and Renal Disease: TRPV1 and TRPA1.
Abstract: Cardiovascular disease (CVD) is the leading cause of morbidity and mortality globally. CVD and kidney disease are closely related, with kidney injury increasing CVD mortality. The pathogenesis of cardiovascular and renal diseases involves complex and diverse interactions between multiple extracellular and intracellular signaling molecules, among which transient receptor potential vanilloid 1 (TRPV1)/transient receptor potential ankyrin 1 (TRPA1) channels have received increasing attention. TRPV1 belongs to the vanilloid receptor subtype family of transient receptor potential ion channels, and TRPA1 belongs to the transient receptor potential channel superfamily. TRPV1/TRPA1 are jointly involved in the management of cardiovascular and renal diseases and play important roles in regulating vascular tension, promoting angiogenesis, antifibrosis, anti-inflammation, and antioxidation. The mechanism of TRPV1/TRPA1 is mainly related to regulation of intracellular calcium influx and release of nitric oxide and calcitonin gene-related peptide. Therefore, this study takes the TRPV1/TRPA1 channel as the research object, analyzes and summarizes the process and mechanism of TRPV1/TRPA1 affecting cardiovascular and renal diseases, and lays a foundation for the treatment of cardiorenal diseases.
期刊介绍:
Journal of Cardiovascular Pharmacology is a peer reviewed, multidisciplinary journal that publishes original articles and pertinent review articles on basic and clinical aspects of cardiovascular pharmacology. The Journal encourages submission in all aspects of cardiovascular pharmacology/medicine including, but not limited to: stroke, kidney disease, lipid disorders, diabetes, systemic and pulmonary hypertension, cancer angiogenesis, neural and hormonal control of the circulation, sepsis, neurodegenerative diseases with a vascular component, cardiac and vascular remodeling, heart failure, angina, anticoagulants/antiplatelet agents, drugs/agents that affect vascular smooth muscle, and arrhythmias.
Appropriate subjects include new drug development and evaluation, physiological and pharmacological bases of drug action, metabolism, drug interactions and side effects, application of drugs to gain novel insights into physiology or pathological conditions, clinical results with new and established agents, and novel methods. The focus is on pharmacology in its broadest applications, incorporating not only traditional approaches, but new approaches to the development of pharmacological agents and the prevention and treatment of cardiovascular diseases. Please note that JCVP does not publish work based on biological extracts of mixed and uncertain chemical composition or unknown concentration.