红豆杉能改善肺动脉高压模型中的氧化还原稳态和右心室收缩力

IF 2.6 4区 医学 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS Journal of Cardiovascular Pharmacology Pub Date : 2024-06-01 DOI:10.1097/FJC.0000000000001557
Adriana Conzatti, Rafael Colombo, Rafaela Siqueira, Cristina Campos-Carraro, Patrick Turck, Alexandre Luz de Castro, Adriane Belló-Klein, Alex Sander da Rosa Araujo
{"title":"红豆杉能改善肺动脉高压模型中的氧化还原稳态和右心室收缩力","authors":"Adriana Conzatti, Rafael Colombo, Rafaela Siqueira, Cristina Campos-Carraro, Patrick Turck, Alexandre Luz de Castro, Adriane Belló-Klein, Alex Sander da Rosa Araujo","doi":"10.1097/FJC.0000000000001557","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>Pulmonary arterial hypertension (PAH) is characterized by increased pulmonary vascular resistance (PVR), imposing overload on the right ventricle (RV) and imbalance of the redox state. Our study investigated the influence of treatment with sulforaphane (SFN), found in cruciferous vegetables, on RV remodeling and redox homeostasis in monocrotaline (MCT)-induced PAH. Male Wistar rats were separated into 4 groups: control (CTR); CTR + SFN; MCT; and MCT + SFN. PAH induction was implemented by a single dose of MCT (60 mg/kg intraperitoneally). Treatment with SFN (2.5 mg/kg/day intraperitoneally) started on the seventh day after the MCT injection and persisted for 2 weeks. After 21 days of PAH induction, echocardiographic, hemodynamic, and oxidative stress evaluation was performed. The MCT group showed an increase in RV hypertrophy, RV systolic area, RV systolic, mean pulmonary artery pressure, and PVR and exhibited a decrease in the RV outflow tract acceleration time/ejection time ratio, RV fractional shortening, and tricuspid annular plane systolic excursion compared to CTR ( P < 0.05). SFN-treated PAH attenuated detrimental changes in tricuspid annular plane systolic excursion, mean pulmonary artery pressure, and PVR parameters. Catalase levels and the glutathione/Glutathione disulfide (GSSG) ratio were diminished in the MCT group compared to CTR ( P < 0.05). SFN increased catalase levels and normalized the glutathione/GSSG ratio to control levels ( P < 0.05). Data express the benefit of SFN treatment on the cardiac function of rats with PAH associated with the cellular redox state.</p>","PeriodicalId":15212,"journal":{"name":"Journal of Cardiovascular Pharmacology","volume":" ","pages":"612-620"},"PeriodicalIF":2.6000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sulforaphane Improves Redox Homeostasis and Right Ventricular Contractility in a Model of Pulmonary Hypertension.\",\"authors\":\"Adriana Conzatti, Rafael Colombo, Rafaela Siqueira, Cristina Campos-Carraro, Patrick Turck, Alexandre Luz de Castro, Adriane Belló-Klein, Alex Sander da Rosa Araujo\",\"doi\":\"10.1097/FJC.0000000000001557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Abstract: </strong>Pulmonary arterial hypertension (PAH) is characterized by increased pulmonary vascular resistance (PVR), imposing overload on the right ventricle (RV) and imbalance of the redox state. Our study investigated the influence of treatment with sulforaphane (SFN), found in cruciferous vegetables, on RV remodeling and redox homeostasis in monocrotaline (MCT)-induced PAH. Male Wistar rats were separated into 4 groups: control (CTR); CTR + SFN; MCT; and MCT + SFN. PAH induction was implemented by a single dose of MCT (60 mg/kg intraperitoneally). Treatment with SFN (2.5 mg/kg/day intraperitoneally) started on the seventh day after the MCT injection and persisted for 2 weeks. After 21 days of PAH induction, echocardiographic, hemodynamic, and oxidative stress evaluation was performed. The MCT group showed an increase in RV hypertrophy, RV systolic area, RV systolic, mean pulmonary artery pressure, and PVR and exhibited a decrease in the RV outflow tract acceleration time/ejection time ratio, RV fractional shortening, and tricuspid annular plane systolic excursion compared to CTR ( P < 0.05). SFN-treated PAH attenuated detrimental changes in tricuspid annular plane systolic excursion, mean pulmonary artery pressure, and PVR parameters. Catalase levels and the glutathione/Glutathione disulfide (GSSG) ratio were diminished in the MCT group compared to CTR ( P < 0.05). SFN increased catalase levels and normalized the glutathione/GSSG ratio to control levels ( P < 0.05). Data express the benefit of SFN treatment on the cardiac function of rats with PAH associated with the cellular redox state.</p>\",\"PeriodicalId\":15212,\"journal\":{\"name\":\"Journal of Cardiovascular Pharmacology\",\"volume\":\" \",\"pages\":\"612-620\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cardiovascular Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/FJC.0000000000001557\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/FJC.0000000000001557","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

肺动脉高压(PAH)的特点是肺血管阻力增加、右心室(RV)负荷过重和氧化还原状态失衡。我们的研究探讨了十字花科蔬菜中的莱菔硫烷(SFN)对单克隆诱导的肺动脉高压(PAH)患者右心室重塑和氧化还原平衡的影响。雄性Wistar大鼠被分为四组:对照组(CTR);对照组+莱菔硫烷组(CTR + SFN);单克隆(MCT);单克隆+莱菔硫烷组(MCT + SFN)。PAH 诱导是通过单剂量 MCT(60 毫克/千克,静脉注射)来实现的。SFN(2.5 毫克/千克/天,静脉注射)治疗从注射 MCT 后的第 7 天开始,持续 2 周。诱导PAH 21天后,进行超声心动图、血流动力学和氧化应激评估。与CTR相比,MCT组的RV肥厚、RV收缩面积、RV收缩压、平均肺动脉压(mPAP)和肺血管阻力(PVR)均有所增加,而RV流出道AT/ET比值、RV分数缩短率和三尖瓣环平面收缩期偏移(TAPSE)则有所下降(P<0.05)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sulforaphane Improves Redox Homeostasis and Right Ventricular Contractility in a Model of Pulmonary Hypertension.

Abstract: Pulmonary arterial hypertension (PAH) is characterized by increased pulmonary vascular resistance (PVR), imposing overload on the right ventricle (RV) and imbalance of the redox state. Our study investigated the influence of treatment with sulforaphane (SFN), found in cruciferous vegetables, on RV remodeling and redox homeostasis in monocrotaline (MCT)-induced PAH. Male Wistar rats were separated into 4 groups: control (CTR); CTR + SFN; MCT; and MCT + SFN. PAH induction was implemented by a single dose of MCT (60 mg/kg intraperitoneally). Treatment with SFN (2.5 mg/kg/day intraperitoneally) started on the seventh day after the MCT injection and persisted for 2 weeks. After 21 days of PAH induction, echocardiographic, hemodynamic, and oxidative stress evaluation was performed. The MCT group showed an increase in RV hypertrophy, RV systolic area, RV systolic, mean pulmonary artery pressure, and PVR and exhibited a decrease in the RV outflow tract acceleration time/ejection time ratio, RV fractional shortening, and tricuspid annular plane systolic excursion compared to CTR ( P < 0.05). SFN-treated PAH attenuated detrimental changes in tricuspid annular plane systolic excursion, mean pulmonary artery pressure, and PVR parameters. Catalase levels and the glutathione/Glutathione disulfide (GSSG) ratio were diminished in the MCT group compared to CTR ( P < 0.05). SFN increased catalase levels and normalized the glutathione/GSSG ratio to control levels ( P < 0.05). Data express the benefit of SFN treatment on the cardiac function of rats with PAH associated with the cellular redox state.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
3.30%
发文量
367
审稿时长
1 months
期刊介绍: Journal of Cardiovascular Pharmacology is a peer reviewed, multidisciplinary journal that publishes original articles and pertinent review articles on basic and clinical aspects of cardiovascular pharmacology. The Journal encourages submission in all aspects of cardiovascular pharmacology/medicine including, but not limited to: stroke, kidney disease, lipid disorders, diabetes, systemic and pulmonary hypertension, cancer angiogenesis, neural and hormonal control of the circulation, sepsis, neurodegenerative diseases with a vascular component, cardiac and vascular remodeling, heart failure, angina, anticoagulants/antiplatelet agents, drugs/agents that affect vascular smooth muscle, and arrhythmias. Appropriate subjects include new drug development and evaluation, physiological and pharmacological bases of drug action, metabolism, drug interactions and side effects, application of drugs to gain novel insights into physiology or pathological conditions, clinical results with new and established agents, and novel methods. The focus is on pharmacology in its broadest applications, incorporating not only traditional approaches, but new approaches to the development of pharmacological agents and the prevention and treatment of cardiovascular diseases. Please note that JCVP does not publish work based on biological extracts of mixed and uncertain chemical composition or unknown concentration.
期刊最新文献
Optimizing Digoxin Use for Rate Control in Critically Ill Patients with Atrial Arrhythmias: Lessons from a Retrospective Study. Efficacy and safety of Treating Pulmonary Arterial Hypertension With Imatinib:A meta-analysis of randomized controlled trials. IL-1 blockade in myocardial infarction and its efficacy in patients with complex coronary artery disease. Another brick in the wall. Advances in studying the pathological mechanisms and treatment strategies of transthyretin amyloidosis. Drug-induced Spontaneous intramural hematoma of the gastrointestinal tract: A real-world pharmacovigilance analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1