关于人类接触微塑料和纳米塑料的途径和影响的科学证据。

IF 1.7 4区 医学 Q3 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Arhiv Za Higijenu Rada I Toksikologiju-Archives of Industrial Hygiene and Toxicology Pub Date : 2024-03-29 eCollection Date: 2024-03-01 DOI:10.2478/aiht-2024-75-3807
Buket Bakan, Nikolina Kalčec, Sijin Liu, Krunoslav Ilić, Yu Qi, Ivona Capjak, Lucija Božičević, Nikolina Peranić, Ivana Vinković Vrček
{"title":"关于人类接触微塑料和纳米塑料的途径和影响的科学证据。","authors":"Buket Bakan, Nikolina Kalčec, Sijin Liu, Krunoslav Ilić, Yu Qi, Ivona Capjak, Lucija Božičević, Nikolina Peranić, Ivana Vinković Vrček","doi":"10.2478/aiht-2024-75-3807","DOIUrl":null,"url":null,"abstract":"<p><p>Human exposure to plastic particles has raised great concern among all relevant stakeholders involved in the protection of human health due to the contamination of the food chain, surface waters, and even drinking water as well as due to their persistence and bioaccumulation. Now more than ever, it is critical that we understand the biological fate of plastics and their interaction with different biological systems. Because of the ubiquity of plastic materials in the environment and their toxic potential, it is imperative to gain reliable, regulatory-relevant, science-based data on the effects of plastic micro- and nanoparticles (PMNPs) on human health in order to implement reliable risk assessment and management strategies in the circular economy of plastics. This review presents current knowledge of human-relevant PMNP exposure doses, pathways, and toxic effects. It addresses difficulties in properly assessing plastic exposure and current knowledge gaps and proposes steps that can be taken to underpin health risk perception, assessment, and mitigation through rigorous science-based evidence. Based on the existing scientific data on PMNP adverse health effects, this review brings recommendations on the development of PMNP-specific adverse outcome pathways (AOPs) following the AOP Users' Handbook of the Organisation for Economic Cooperation and Development (OECD).</p>","PeriodicalId":55462,"journal":{"name":"Arhiv Za Higijenu Rada I Toksikologiju-Archives of Industrial Hygiene and Toxicology","volume":"75 1","pages":"1-14"},"PeriodicalIF":1.7000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10978163/pdf/","citationCount":"0","resultStr":"{\"title\":\"Science-based evidence on pathways and effects of human exposure to micro- and nanoplastics.\",\"authors\":\"Buket Bakan, Nikolina Kalčec, Sijin Liu, Krunoslav Ilić, Yu Qi, Ivona Capjak, Lucija Božičević, Nikolina Peranić, Ivana Vinković Vrček\",\"doi\":\"10.2478/aiht-2024-75-3807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human exposure to plastic particles has raised great concern among all relevant stakeholders involved in the protection of human health due to the contamination of the food chain, surface waters, and even drinking water as well as due to their persistence and bioaccumulation. Now more than ever, it is critical that we understand the biological fate of plastics and their interaction with different biological systems. Because of the ubiquity of plastic materials in the environment and their toxic potential, it is imperative to gain reliable, regulatory-relevant, science-based data on the effects of plastic micro- and nanoparticles (PMNPs) on human health in order to implement reliable risk assessment and management strategies in the circular economy of plastics. This review presents current knowledge of human-relevant PMNP exposure doses, pathways, and toxic effects. It addresses difficulties in properly assessing plastic exposure and current knowledge gaps and proposes steps that can be taken to underpin health risk perception, assessment, and mitigation through rigorous science-based evidence. Based on the existing scientific data on PMNP adverse health effects, this review brings recommendations on the development of PMNP-specific adverse outcome pathways (AOPs) following the AOP Users' Handbook of the Organisation for Economic Cooperation and Development (OECD).</p>\",\"PeriodicalId\":55462,\"journal\":{\"name\":\"Arhiv Za Higijenu Rada I Toksikologiju-Archives of Industrial Hygiene and Toxicology\",\"volume\":\"75 1\",\"pages\":\"1-14\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10978163/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arhiv Za Higijenu Rada I Toksikologiju-Archives of Industrial Hygiene and Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2478/aiht-2024-75-3807\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arhiv Za Higijenu Rada I Toksikologiju-Archives of Industrial Hygiene and Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2478/aiht-2024-75-3807","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

摘要

由于塑料微粒对食物链、地表水甚至饮用水的污染,以及其持久性和生物蓄积性,人类接触塑料微粒已引起所有参与保护人类健康的相关利益方的极大关注。现在,我们比以往任何时候都更有必要了解塑料的生物归宿及其与不同生物系统的相互作用。由于塑料材料在环境中无处不在,而且具有潜在毒性,因此必须获得可靠的、与监管相关的、以科学为基础的塑料微粒和纳米粒子(PMNPs)对人类健康影响的数据,以便在塑料循环经济中实施可靠的风险评估和管理策略。本综述介绍了目前与人类相关的 PMNP 暴露剂量、途径和毒性效应方面的知识。它探讨了正确评估塑料暴露的困难和当前的知识差距,并提出了可采取的步骤,以便通过严格的科学证据来支持健康风险的感知、评估和缓解。根据现有的关于可吸入颗粒物对健康的不良影响的科学数据,本综述按照经济合作与发展组织(OECD)的《不良反应途径用户手册》,提出了关于制定可吸入颗粒物特定不良反应途径(AOPs)的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Science-based evidence on pathways and effects of human exposure to micro- and nanoplastics.

Human exposure to plastic particles has raised great concern among all relevant stakeholders involved in the protection of human health due to the contamination of the food chain, surface waters, and even drinking water as well as due to their persistence and bioaccumulation. Now more than ever, it is critical that we understand the biological fate of plastics and their interaction with different biological systems. Because of the ubiquity of plastic materials in the environment and their toxic potential, it is imperative to gain reliable, regulatory-relevant, science-based data on the effects of plastic micro- and nanoparticles (PMNPs) on human health in order to implement reliable risk assessment and management strategies in the circular economy of plastics. This review presents current knowledge of human-relevant PMNP exposure doses, pathways, and toxic effects. It addresses difficulties in properly assessing plastic exposure and current knowledge gaps and proposes steps that can be taken to underpin health risk perception, assessment, and mitigation through rigorous science-based evidence. Based on the existing scientific data on PMNP adverse health effects, this review brings recommendations on the development of PMNP-specific adverse outcome pathways (AOPs) following the AOP Users' Handbook of the Organisation for Economic Cooperation and Development (OECD).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Arhiv Za Higijenu Rada I Toksikologiju-Archives of Industrial Hygiene and Toxicology
Arhiv Za Higijenu Rada I Toksikologiju-Archives of Industrial Hygiene and Toxicology PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH-TOXICOLOGY
CiteScore
3.50
自引率
4.80%
发文量
26
审稿时长
6-12 weeks
期刊介绍: Archives of Industrial Hygiene and Toxicology (abbr. Arh Hig Rada Toksikol) is a peer-reviewed biomedical scientific quarterly that publishes contributions relevant to all aspects of environmental and occupational health and toxicology.
期刊最新文献
Bis(amino acidato)copper(II) compounds in blood plasma: a review of computed structural properties and amino acid affinities for Cu2+ informing further pharmacological research. Difference between hand and forearm transepidermal water loss and skin pH as an improved method to biomonitor occupational hand eczema: our findings in healthcare workers. Does organisational myopia mediate the effect of occupational health and safety practices on the risk of occupational accidents in Turkish healthcare institutions? Factors predicting the level of vaccine protection against hepatitis B virus infection among physicians and nurses in Šabac, Serbia. Justice sensitivity among nurses and physiotherapists in a Croatian rehabilitation hospital.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1