内啡肽-1在大鼠颅内感觉神经节中的分布和抗痛觉功能

IF 1.3 4区 医学 Q4 MEDICINE, RESEARCH & EXPERIMENTAL Biomedical Research-tokyo Pub Date : 2024-01-01 DOI:10.2220/biomedres.45.77
Shun Sato, Tadasu Sato, Takehiro Yajima, Daisuke Tachiya, Tetsu Takahashi, Shinnosuke Nogami, Masahiro Saito, Kensuke Yamauchi, Hiroyuki Ichikawa
{"title":"内啡肽-1在大鼠颅内感觉神经节中的分布和抗痛觉功能","authors":"Shun Sato, Tadasu Sato, Takehiro Yajima, Daisuke Tachiya, Tetsu Takahashi, Shinnosuke Nogami, Masahiro Saito, Kensuke Yamauchi, Hiroyuki Ichikawa","doi":"10.2220/biomedres.45.77","DOIUrl":null,"url":null,"abstract":"<p><p>Distribution of endomorphin-1 (EM-1) was immunohistochemically investigated in the rat cranial sensory ganglia. Small to medium-sized neurons in the trigeminal (TG), petrosal (PG), and jugular ganglia (JG) expressed EM-1-immunoreactivity. However, EM-1-immunoreactive (-ir) neurons were infrequent in the nodose ganglion. In the brainstem, EM-1-ir varicose fibers were detected in the superficial layer of the medullary dorsal horn and the caudal part of the nucleus tractus solitarius. By trichrome immunofluorescence analysis, approximately 70% of EM-1-ir neurons were also immunoreactive for transient receptor potential vanilloid 1 (TRPV1) in all the examined ganglia. Additionally, 56.8% of EM1-ir TG neurons and approximately 30% of EM-1-ir PG and JG neurons showed calcitonin gene-related peptide (CGRP)-immunoreactivity. By a retrograde tracing method, several TG, PG, and JG neurons innervating the facial and external ear canal skin expressed EM-1-immunoreactivity. However, EM-1-ir neurons innervating the tooth pulp, circumvallate papilla, and pharynx were relatively rare. Thus, EM-1 expression and its coexistence with TRPV1 and CGRP in the cranial sensory neurons may depend on their various peripheral targets. EM1-ir neurons probably project to the superficial layer of the medullary dorsal horn and caudal part of the nucleus tractus solitarius. EM-1 may be involved in nociceptive transmission from the skin.</p>","PeriodicalId":9138,"journal":{"name":"Biomedical Research-tokyo","volume":"45 2","pages":"77-89"},"PeriodicalIF":1.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distribution and anti-nociceptive function of endomorphin-1 in the rat cranial sensory ganglia.\",\"authors\":\"Shun Sato, Tadasu Sato, Takehiro Yajima, Daisuke Tachiya, Tetsu Takahashi, Shinnosuke Nogami, Masahiro Saito, Kensuke Yamauchi, Hiroyuki Ichikawa\",\"doi\":\"10.2220/biomedres.45.77\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Distribution of endomorphin-1 (EM-1) was immunohistochemically investigated in the rat cranial sensory ganglia. Small to medium-sized neurons in the trigeminal (TG), petrosal (PG), and jugular ganglia (JG) expressed EM-1-immunoreactivity. However, EM-1-immunoreactive (-ir) neurons were infrequent in the nodose ganglion. In the brainstem, EM-1-ir varicose fibers were detected in the superficial layer of the medullary dorsal horn and the caudal part of the nucleus tractus solitarius. By trichrome immunofluorescence analysis, approximately 70% of EM-1-ir neurons were also immunoreactive for transient receptor potential vanilloid 1 (TRPV1) in all the examined ganglia. Additionally, 56.8% of EM1-ir TG neurons and approximately 30% of EM-1-ir PG and JG neurons showed calcitonin gene-related peptide (CGRP)-immunoreactivity. By a retrograde tracing method, several TG, PG, and JG neurons innervating the facial and external ear canal skin expressed EM-1-immunoreactivity. However, EM-1-ir neurons innervating the tooth pulp, circumvallate papilla, and pharynx were relatively rare. Thus, EM-1 expression and its coexistence with TRPV1 and CGRP in the cranial sensory neurons may depend on their various peripheral targets. EM1-ir neurons probably project to the superficial layer of the medullary dorsal horn and caudal part of the nucleus tractus solitarius. EM-1 may be involved in nociceptive transmission from the skin.</p>\",\"PeriodicalId\":9138,\"journal\":{\"name\":\"Biomedical Research-tokyo\",\"volume\":\"45 2\",\"pages\":\"77-89\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Research-tokyo\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2220/biomedres.45.77\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Research-tokyo","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2220/biomedres.45.77","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

免疫组织化学研究了大鼠颅内感觉神经节中内啡肽-1(EM-1)的分布。三叉神经节(TG)、鞍旁神经节(PG)和颈神经节(JG)中的中小型神经元表达了 EM-1 免疫活性。然而,在结节神经节中,EM-1-免疫反应(-ir)神经元并不常见。在脑干,髓质背角浅层和孤束核尾部检测到 EM-1-ir 曲张纤维。通过三色免疫荧光分析,在所有受检神经节中,约70%的EM-1-ir神经元对瞬时受体电位类香草素1(TRPV1)也有免疫反应。此外,56.8%的EM1-ir TG神经元和大约30%的EM1-ir PG和JG神经元显示降钙素基因相关肽(CGRP)免疫反应。通过逆行追踪法,支配面部和外耳道皮肤的多个 TG、PG 和 JG 神经元表达了 EM-1 免疫活性。然而,支配牙髓、环状乳头和咽部的 EM-1-ir 神经元相对较少。因此,EM-1 在颅内感觉神经元中的表达及其与 TRPV1 和 CGRP 的共存可能取决于它们的各种外周靶点。EM1-ir神经元可能投射到延髓背角浅层和独束核尾部。EM-1 可能参与了来自皮肤的痛觉传导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Distribution and anti-nociceptive function of endomorphin-1 in the rat cranial sensory ganglia.

Distribution of endomorphin-1 (EM-1) was immunohistochemically investigated in the rat cranial sensory ganglia. Small to medium-sized neurons in the trigeminal (TG), petrosal (PG), and jugular ganglia (JG) expressed EM-1-immunoreactivity. However, EM-1-immunoreactive (-ir) neurons were infrequent in the nodose ganglion. In the brainstem, EM-1-ir varicose fibers were detected in the superficial layer of the medullary dorsal horn and the caudal part of the nucleus tractus solitarius. By trichrome immunofluorescence analysis, approximately 70% of EM-1-ir neurons were also immunoreactive for transient receptor potential vanilloid 1 (TRPV1) in all the examined ganglia. Additionally, 56.8% of EM1-ir TG neurons and approximately 30% of EM-1-ir PG and JG neurons showed calcitonin gene-related peptide (CGRP)-immunoreactivity. By a retrograde tracing method, several TG, PG, and JG neurons innervating the facial and external ear canal skin expressed EM-1-immunoreactivity. However, EM-1-ir neurons innervating the tooth pulp, circumvallate papilla, and pharynx were relatively rare. Thus, EM-1 expression and its coexistence with TRPV1 and CGRP in the cranial sensory neurons may depend on their various peripheral targets. EM1-ir neurons probably project to the superficial layer of the medullary dorsal horn and caudal part of the nucleus tractus solitarius. EM-1 may be involved in nociceptive transmission from the skin.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical Research-tokyo
Biomedical Research-tokyo 医学-医学:研究与实验
CiteScore
2.40
自引率
0.00%
发文量
19
审稿时长
>12 weeks
期刊介绍: Biomedical Research is peer-reviewed International Research Journal . It was first launched in 1990 as a biannual English Journal and later became triannual. From 2008 it is published in Jan-Apr/ May-Aug/ Sep-Dec..
期刊最新文献
Gastric biopsy-derived cell line and its utility in assessing tumor cell drug sensitivity. Green coffee bean extract rich in chlorogenic acids prevents muscle capillary regression via inhibiting oxidative stress and enhancing angiogenesis. Mitochondrial DNA copy number variations in Epstein-Barr virus-transformed B cells after exposure to radiation: A possible biomarker for dose assessment. Mycophenolate mofetil reduces cell viability associated with the miR-205-PAX9 pathway in human lip fibroblast cells. Epigenetic modification of histone acetylation in the sensorimotor cortex after intracerebral hemorrhage.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1