利用长短期记忆(LSTM)自动编码器和脉冲响应函数量化结构损伤

Chencho , Jun Li , Hong Hao
{"title":"利用长短期记忆(LSTM)自动编码器和脉冲响应函数量化结构损伤","authors":"Chencho ,&nbsp;Jun Li ,&nbsp;Hong Hao","doi":"10.1016/j.iintel.2024.100086","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents an approach for structural damage quantification using a long short-term memory (LSTM) auto-encoder and impulse response functions (IRF). Among time domain responses-based methods for structural damage identification, using IRF is advantageous over the original time domain responses, since IRF consists of information of system properties and is loading effect independent. In this study, IRFs are extracted from the acceleration responses measured from different locations of structures under impact force excitations. The obtained IRFs are concatenated. Moving averaging with a suitable window size is performed to reduce random variations in the concatenated responses. Further, principal component analysis is performed for dimensionality reduction. These selected principal components are then fed to the LSTM auto-encoder for structural damage identification. A noise layer is added as an input layer to the LSTM auto-encoder to regularise the model. The proposed model consists of two phases: (1) reconstruction of the selected “principal components” to extract the features; and (2) damage identification of structural elements. Numerical studies are conducted to verify the accuracy of the proposed approach. The results demonstrate that the proposed approach can accurately identify and quantify structural damage for both single- and multiple-element damage cases with noisy measurements, as well as uncertainties in the stiffness parameters. Furthermore, the performance of the proposed approach is evaluated using the limited measurements from a few sensors.</p></div>","PeriodicalId":100791,"journal":{"name":"Journal of Infrastructure Intelligence and Resilience","volume":"3 2","pages":"Article 100086"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772991524000057/pdfft?md5=f3e5252bd85bf26600d9a4445daa485f&pid=1-s2.0-S2772991524000057-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Structural damage quantification using long short-term memory (LSTM) auto-encoder and impulse response functions\",\"authors\":\"Chencho ,&nbsp;Jun Li ,&nbsp;Hong Hao\",\"doi\":\"10.1016/j.iintel.2024.100086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents an approach for structural damage quantification using a long short-term memory (LSTM) auto-encoder and impulse response functions (IRF). Among time domain responses-based methods for structural damage identification, using IRF is advantageous over the original time domain responses, since IRF consists of information of system properties and is loading effect independent. In this study, IRFs are extracted from the acceleration responses measured from different locations of structures under impact force excitations. The obtained IRFs are concatenated. Moving averaging with a suitable window size is performed to reduce random variations in the concatenated responses. Further, principal component analysis is performed for dimensionality reduction. These selected principal components are then fed to the LSTM auto-encoder for structural damage identification. A noise layer is added as an input layer to the LSTM auto-encoder to regularise the model. The proposed model consists of two phases: (1) reconstruction of the selected “principal components” to extract the features; and (2) damage identification of structural elements. Numerical studies are conducted to verify the accuracy of the proposed approach. The results demonstrate that the proposed approach can accurately identify and quantify structural damage for both single- and multiple-element damage cases with noisy measurements, as well as uncertainties in the stiffness parameters. Furthermore, the performance of the proposed approach is evaluated using the limited measurements from a few sensors.</p></div>\",\"PeriodicalId\":100791,\"journal\":{\"name\":\"Journal of Infrastructure Intelligence and Resilience\",\"volume\":\"3 2\",\"pages\":\"Article 100086\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772991524000057/pdfft?md5=f3e5252bd85bf26600d9a4445daa485f&pid=1-s2.0-S2772991524000057-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Infrastructure Intelligence and Resilience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772991524000057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Infrastructure Intelligence and Resilience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772991524000057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种利用长短期记忆(LSTM)自动编码器和脉冲响应函数(IRF)进行结构损伤量化的方法。在基于时域响应的结构损伤识别方法中,使用 IRF 比原始时域响应更具优势,因为 IRF 包含系统属性信息,且与加载效应无关。本研究从冲击力激励下不同位置结构测得的加速度响应中提取 IRF。将获得的 IRF 连接起来。使用合适的窗口大小进行移动平均,以减少串联响应中的随机变化。此外,还进行主成分分析以降低维度。然后将这些选定的主成分输入 LSTM 自动编码器,用于结构损伤识别。作为 LSTM 自动编码器的输入层,还添加了一个噪声层,对模型进行正则化处理。建议的模型包括两个阶段:(1) 重建选定的 "主成分 "以提取特征;(2) 结构元素的损坏识别。为验证所提方法的准确性,我们进行了数值研究。结果表明,无论是单元素还是多元素损坏情况下的噪声测量,以及刚度参数的不确定性,所提出的方法都能准确识别和量化结构损坏。此外,还利用来自少数传感器的有限测量数据对拟议方法的性能进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structural damage quantification using long short-term memory (LSTM) auto-encoder and impulse response functions

This paper presents an approach for structural damage quantification using a long short-term memory (LSTM) auto-encoder and impulse response functions (IRF). Among time domain responses-based methods for structural damage identification, using IRF is advantageous over the original time domain responses, since IRF consists of information of system properties and is loading effect independent. In this study, IRFs are extracted from the acceleration responses measured from different locations of structures under impact force excitations. The obtained IRFs are concatenated. Moving averaging with a suitable window size is performed to reduce random variations in the concatenated responses. Further, principal component analysis is performed for dimensionality reduction. These selected principal components are then fed to the LSTM auto-encoder for structural damage identification. A noise layer is added as an input layer to the LSTM auto-encoder to regularise the model. The proposed model consists of two phases: (1) reconstruction of the selected “principal components” to extract the features; and (2) damage identification of structural elements. Numerical studies are conducted to verify the accuracy of the proposed approach. The results demonstrate that the proposed approach can accurately identify and quantify structural damage for both single- and multiple-element damage cases with noisy measurements, as well as uncertainties in the stiffness parameters. Furthermore, the performance of the proposed approach is evaluated using the limited measurements from a few sensors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
期刊最新文献
Review on optimization strategies of probabilistic diagnostic imaging methods An integrated management system (IMS) approach to sustainable construction development and management Quantitative risk analysis of road transportation of hazardous materials in coastal areas Multimodal vortex-induced vibration mitigation and design approach of bistable nonlinear energy sink inerter on bridge structure Enhanced operational modal analysis and change point detection for vibration-based structural health monitoring of bridges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1