Guilhem Lalle, Raphaëlle Lautraite, Khaled Bouherrou, Maud Plaschka, Aurora Pignata, Allison Voisin, Julie Twardowski, Marlène Perrin-Niquet, Pierre Stéphan, Sarah Durget, Laurie Tonon, Maude Ardin, Cyril Degletagne, Alain Viari, Laurence Belgarbi Dutron, Nathalie Davoust, Thomas S Postler, Jingyao Zhao, Christophe Caux, Julie Caramel, Stéphane Dalle, Philippe A Cassier, Ulf Klein, Marc Schmidt-Supprian, Roland Liblau, Sankar Ghosh, Yenkel Grinberg-Bleyer
{"title":"NF-κB 亚基 RelA 和 c-Rel 可选择性地控制多发性硬化症和癌症中 CD4+ T 细胞的功能。","authors":"Guilhem Lalle, Raphaëlle Lautraite, Khaled Bouherrou, Maud Plaschka, Aurora Pignata, Allison Voisin, Julie Twardowski, Marlène Perrin-Niquet, Pierre Stéphan, Sarah Durget, Laurie Tonon, Maude Ardin, Cyril Degletagne, Alain Viari, Laurence Belgarbi Dutron, Nathalie Davoust, Thomas S Postler, Jingyao Zhao, Christophe Caux, Julie Caramel, Stéphane Dalle, Philippe A Cassier, Ulf Klein, Marc Schmidt-Supprian, Roland Liblau, Sankar Ghosh, Yenkel Grinberg-Bleyer","doi":"10.1084/jem.20231348","DOIUrl":null,"url":null,"abstract":"<p><p>The outcome of cancer and autoimmunity is often dictated by the effector functions of CD4+ conventional T cells (Tconv). Although activation of the NF-κB signaling pathway has long been implicated in Tconv biology, the cell-autonomous roles of the separate NF-κB transcription-factor subunits are unknown. Here, we dissected the contributions of the canonical NF-κB subunits RelA and c-Rel to Tconv function. RelA, rather than c-Rel, regulated Tconv activation and cytokine production at steady-state and was required for polarization toward the TH17 lineage in vitro. Accordingly, RelA-deficient mice were fully protected against neuroinflammation in a model of multiple sclerosis due to defective transition to a pathogenic TH17 gene-expression program. Conversely, Tconv-restricted ablation of c-Rel impaired their function in the microenvironment of transplanted tumors, resulting in enhanced cancer burden. Moreover, Tconv required c-Rel for the response to PD-1-blockade therapy. Our data reveal distinct roles for canonical NF-κB subunits in different disease contexts, paving the way for subunit-targeted immunotherapies.</p>","PeriodicalId":15760,"journal":{"name":"Journal of Experimental Medicine","volume":"221 6","pages":""},"PeriodicalIF":12.6000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10986815/pdf/","citationCount":"0","resultStr":"{\"title\":\"NF-κB subunits RelA and c-Rel selectively control CD4+ T cell function in multiple sclerosis and cancer.\",\"authors\":\"Guilhem Lalle, Raphaëlle Lautraite, Khaled Bouherrou, Maud Plaschka, Aurora Pignata, Allison Voisin, Julie Twardowski, Marlène Perrin-Niquet, Pierre Stéphan, Sarah Durget, Laurie Tonon, Maude Ardin, Cyril Degletagne, Alain Viari, Laurence Belgarbi Dutron, Nathalie Davoust, Thomas S Postler, Jingyao Zhao, Christophe Caux, Julie Caramel, Stéphane Dalle, Philippe A Cassier, Ulf Klein, Marc Schmidt-Supprian, Roland Liblau, Sankar Ghosh, Yenkel Grinberg-Bleyer\",\"doi\":\"10.1084/jem.20231348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The outcome of cancer and autoimmunity is often dictated by the effector functions of CD4+ conventional T cells (Tconv). Although activation of the NF-κB signaling pathway has long been implicated in Tconv biology, the cell-autonomous roles of the separate NF-κB transcription-factor subunits are unknown. Here, we dissected the contributions of the canonical NF-κB subunits RelA and c-Rel to Tconv function. RelA, rather than c-Rel, regulated Tconv activation and cytokine production at steady-state and was required for polarization toward the TH17 lineage in vitro. Accordingly, RelA-deficient mice were fully protected against neuroinflammation in a model of multiple sclerosis due to defective transition to a pathogenic TH17 gene-expression program. Conversely, Tconv-restricted ablation of c-Rel impaired their function in the microenvironment of transplanted tumors, resulting in enhanced cancer burden. Moreover, Tconv required c-Rel for the response to PD-1-blockade therapy. Our data reveal distinct roles for canonical NF-κB subunits in different disease contexts, paving the way for subunit-targeted immunotherapies.</p>\",\"PeriodicalId\":15760,\"journal\":{\"name\":\"Journal of Experimental Medicine\",\"volume\":\"221 6\",\"pages\":\"\"},\"PeriodicalIF\":12.6000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10986815/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1084/jem.20231348\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1084/jem.20231348","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
NF-κB subunits RelA and c-Rel selectively control CD4+ T cell function in multiple sclerosis and cancer.
The outcome of cancer and autoimmunity is often dictated by the effector functions of CD4+ conventional T cells (Tconv). Although activation of the NF-κB signaling pathway has long been implicated in Tconv biology, the cell-autonomous roles of the separate NF-κB transcription-factor subunits are unknown. Here, we dissected the contributions of the canonical NF-κB subunits RelA and c-Rel to Tconv function. RelA, rather than c-Rel, regulated Tconv activation and cytokine production at steady-state and was required for polarization toward the TH17 lineage in vitro. Accordingly, RelA-deficient mice were fully protected against neuroinflammation in a model of multiple sclerosis due to defective transition to a pathogenic TH17 gene-expression program. Conversely, Tconv-restricted ablation of c-Rel impaired their function in the microenvironment of transplanted tumors, resulting in enhanced cancer burden. Moreover, Tconv required c-Rel for the response to PD-1-blockade therapy. Our data reveal distinct roles for canonical NF-κB subunits in different disease contexts, paving the way for subunit-targeted immunotherapies.
期刊介绍:
Since its establishment in 1896, the Journal of Experimental Medicine (JEM) has steadfastly pursued the publication of enduring and exceptional studies in medical biology. In an era where numerous publishing groups are introducing specialized journals, we recognize the importance of offering a distinguished platform for studies that seamlessly integrate various disciplines within the pathogenesis field.
Our unique editorial system, driven by a commitment to exceptional author service, involves two collaborative groups of editors: professional editors with robust scientific backgrounds and full-time practicing scientists. Each paper undergoes evaluation by at least one editor from both groups before external review. Weekly editorial meetings facilitate comprehensive discussions on papers, incorporating external referee comments, and ensure swift decisions without unnecessary demands for extensive revisions.
Encompassing human studies and diverse in vivo experimental models of human disease, our focus within medical biology spans genetics, inflammation, immunity, infectious disease, cancer, vascular biology, metabolic disorders, neuroscience, and stem cell biology. We eagerly welcome reports ranging from atomic-level analyses to clinical interventions that unveil new mechanistic insights.