Zijian Cao , Qiao Sun , Wenhao Yang , Changcheng Song , Zhe Wang , Huiyuan Li
{"title":"适用于 FP16 加速器的新型 HPL-AI 方法及其在 Kunpeng+Ascend AI 专用平台上的实例化","authors":"Zijian Cao , Qiao Sun , Wenhao Yang , Changcheng Song , Zhe Wang , Huiyuan Li","doi":"10.1016/j.jpdc.2024.104884","DOIUrl":null,"url":null,"abstract":"<div><p>HPL-AI, also known as HPL-MxP, is a new benchmark program used to evaluate the upper-bound performance of AI-related tasks on a specific computing cluster. It solves a large linear equation system in FP64, preconditioned by complete LU factorization in lower precision. In this paper, we propose a new HPL-AI approach that relies on the factorization of the coefficient matrix in mixed precision: FP32 diagonals and FP16 off-diagonals. Without compromising the quality of the resultant LU preconditioner, the proposed approach only utilizes the primitive of dense matrix multiplication in FP16 on the accelerator, maximizing the FP16 throughput. Numerical analysis and experiments validate our approach, ensuring avoidance of numerical underflow or overflow during factorization. We implement the proposed approach on Kunpeng+Ascend clusters, a novel AI-specific platform with exceedingly high FP16 peak performance. By applying various optimization techniques, including 2D lookahead, HCCL-based communication pipeline, and SYCL-based tasks overlapping, we achieve 975 TFlops on a single node and nearly 100 PFlops on a cluster of 128 nodes, with a weak scalability of 79.8%.</p></div>","PeriodicalId":54775,"journal":{"name":"Journal of Parallel and Distributed Computing","volume":"190 ","pages":"Article 104884"},"PeriodicalIF":3.4000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel HPL-AI approach for FP16-only accelerator and its instantiation on Kunpeng+Ascend AI-specific platform\",\"authors\":\"Zijian Cao , Qiao Sun , Wenhao Yang , Changcheng Song , Zhe Wang , Huiyuan Li\",\"doi\":\"10.1016/j.jpdc.2024.104884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>HPL-AI, also known as HPL-MxP, is a new benchmark program used to evaluate the upper-bound performance of AI-related tasks on a specific computing cluster. It solves a large linear equation system in FP64, preconditioned by complete LU factorization in lower precision. In this paper, we propose a new HPL-AI approach that relies on the factorization of the coefficient matrix in mixed precision: FP32 diagonals and FP16 off-diagonals. Without compromising the quality of the resultant LU preconditioner, the proposed approach only utilizes the primitive of dense matrix multiplication in FP16 on the accelerator, maximizing the FP16 throughput. Numerical analysis and experiments validate our approach, ensuring avoidance of numerical underflow or overflow during factorization. We implement the proposed approach on Kunpeng+Ascend clusters, a novel AI-specific platform with exceedingly high FP16 peak performance. By applying various optimization techniques, including 2D lookahead, HCCL-based communication pipeline, and SYCL-based tasks overlapping, we achieve 975 TFlops on a single node and nearly 100 PFlops on a cluster of 128 nodes, with a weak scalability of 79.8%.</p></div>\",\"PeriodicalId\":54775,\"journal\":{\"name\":\"Journal of Parallel and Distributed Computing\",\"volume\":\"190 \",\"pages\":\"Article 104884\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Parallel and Distributed Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0743731524000480\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Parallel and Distributed Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0743731524000480","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
A novel HPL-AI approach for FP16-only accelerator and its instantiation on Kunpeng+Ascend AI-specific platform
HPL-AI, also known as HPL-MxP, is a new benchmark program used to evaluate the upper-bound performance of AI-related tasks on a specific computing cluster. It solves a large linear equation system in FP64, preconditioned by complete LU factorization in lower precision. In this paper, we propose a new HPL-AI approach that relies on the factorization of the coefficient matrix in mixed precision: FP32 diagonals and FP16 off-diagonals. Without compromising the quality of the resultant LU preconditioner, the proposed approach only utilizes the primitive of dense matrix multiplication in FP16 on the accelerator, maximizing the FP16 throughput. Numerical analysis and experiments validate our approach, ensuring avoidance of numerical underflow or overflow during factorization. We implement the proposed approach on Kunpeng+Ascend clusters, a novel AI-specific platform with exceedingly high FP16 peak performance. By applying various optimization techniques, including 2D lookahead, HCCL-based communication pipeline, and SYCL-based tasks overlapping, we achieve 975 TFlops on a single node and nearly 100 PFlops on a cluster of 128 nodes, with a weak scalability of 79.8%.
期刊介绍:
This international journal is directed to researchers, engineers, educators, managers, programmers, and users of computers who have particular interests in parallel processing and/or distributed computing.
The Journal of Parallel and Distributed Computing publishes original research papers and timely review articles on the theory, design, evaluation, and use of parallel and/or distributed computing systems. The journal also features special issues on these topics; again covering the full range from the design to the use of our targeted systems.