构建和整合无脊椎动物神经系统功能的全脑图谱

IF 4.8 2区 医学 Q1 NEUROSCIENCES Current Opinion in Neurobiology Pub Date : 2024-04-03 DOI:10.1016/j.conb.2024.102868
Talya S. Kramer , Steven W. Flavell
{"title":"构建和整合无脊椎动物神经系统功能的全脑图谱","authors":"Talya S. Kramer ,&nbsp;Steven W. Flavell","doi":"10.1016/j.conb.2024.102868","DOIUrl":null,"url":null,"abstract":"<div><p>The selection and execution of context-appropriate behaviors is controlled by the integrated action of neural circuits throughout the brain. However, how activity is coordinated across brain regions, and how nervous system structure enables these functional interactions, remain open questions. Recent technical advances have made it feasible to build brain-wide maps of nervous system structure and function, such as brain activity maps, connectomes, and cell atlases. Here, we review recent progress in this area, focusing on <em>C. elegans</em> and <em>D. melanogaster</em>, as recent work has produced global maps of these nervous systems. We also describe neural circuit motifs elucidated in studies of specific networks, which highlight the complexities that must be captured to build accurate models of whole-brain function.</p></div>","PeriodicalId":10999,"journal":{"name":"Current Opinion in Neurobiology","volume":"86 ","pages":"Article 102868"},"PeriodicalIF":4.8000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0959438824000308/pdfft?md5=5d4ea1c824b11c407374d5679084a05d&pid=1-s2.0-S0959438824000308-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Building and integrating brain-wide maps of nervous system function in invertebrates\",\"authors\":\"Talya S. Kramer ,&nbsp;Steven W. Flavell\",\"doi\":\"10.1016/j.conb.2024.102868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The selection and execution of context-appropriate behaviors is controlled by the integrated action of neural circuits throughout the brain. However, how activity is coordinated across brain regions, and how nervous system structure enables these functional interactions, remain open questions. Recent technical advances have made it feasible to build brain-wide maps of nervous system structure and function, such as brain activity maps, connectomes, and cell atlases. Here, we review recent progress in this area, focusing on <em>C. elegans</em> and <em>D. melanogaster</em>, as recent work has produced global maps of these nervous systems. We also describe neural circuit motifs elucidated in studies of specific networks, which highlight the complexities that must be captured to build accurate models of whole-brain function.</p></div>\",\"PeriodicalId\":10999,\"journal\":{\"name\":\"Current Opinion in Neurobiology\",\"volume\":\"86 \",\"pages\":\"Article 102868\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0959438824000308/pdfft?md5=5d4ea1c824b11c407374d5679084a05d&pid=1-s2.0-S0959438824000308-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959438824000308\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959438824000308","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

选择和执行与环境相适应的行为是由整个大脑神经回路的综合作用控制的。然而,大脑各区域的活动是如何协调的,神经系统的结构又是如何实现这些功能性互动的,这些问题仍然悬而未决。最近的技术进步使得绘制全脑神经系统结构和功能图谱(如脑活动图谱、连接组和细胞图谱)成为可能。在此,我们回顾了这一领域的最新进展,重点是 elegans 和 D. melanogaster,因为最近的研究已经绘制出了这些神经系统的全局图。我们还描述了在特定网络研究中阐明的神经回路图案,这些图案凸显了要建立准确的全脑功能模型所必须捕捉的复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Building and integrating brain-wide maps of nervous system function in invertebrates

The selection and execution of context-appropriate behaviors is controlled by the integrated action of neural circuits throughout the brain. However, how activity is coordinated across brain regions, and how nervous system structure enables these functional interactions, remain open questions. Recent technical advances have made it feasible to build brain-wide maps of nervous system structure and function, such as brain activity maps, connectomes, and cell atlases. Here, we review recent progress in this area, focusing on C. elegans and D. melanogaster, as recent work has produced global maps of these nervous systems. We also describe neural circuit motifs elucidated in studies of specific networks, which highlight the complexities that must be captured to build accurate models of whole-brain function.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Opinion in Neurobiology
Current Opinion in Neurobiology 医学-神经科学
CiteScore
11.10
自引率
1.80%
发文量
130
审稿时长
4-8 weeks
期刊介绍: Current Opinion in Neurobiology publishes short annotated reviews by leading experts on recent developments in the field of neurobiology. These experts write short reviews describing recent discoveries in this field (in the past 2-5 years), as well as highlighting select individual papers of particular significance. The journal is thus an important resource allowing researchers and educators to quickly gain an overview and rich understanding of complex and current issues in the field of Neurobiology. The journal takes a unique and valuable approach in focusing each special issue around a topic of scientific and/or societal interest, and then bringing together leading international experts studying that topic, embracing diverse methodologies and perspectives. Journal Content: The journal consists of 6 issues per year, covering 8 recurring topics every other year in the following categories: -Neurobiology of Disease- Neurobiology of Behavior- Cellular Neuroscience- Systems Neuroscience- Developmental Neuroscience- Neurobiology of Learning and Plasticity- Molecular Neuroscience- Computational Neuroscience
期刊最新文献
CAMK2; four genes, one syndrome? Delineation of genotype–phenotype correlations Roles of ANK2/ankyrin-B in neurodevelopmental disorders: Isoform functions and implications for autism spectrum disorder and epilepsy The convoluted path leading to neuronal circuit formation New insights into the molecular architecture of neurons by cryo-electron tomography Turning garbage into gold: Autophagy in synaptic function
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1