基于双种群和突变策略鲸鱼优化算法的有效功率优化方法

IF 1.6 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Chinese Journal of Electronics Pub Date : 2024-03-01 DOI:10.23919/cje.2022.00.358
Juncai He;Zhenxue He;Jia Liu;Yan Zhang;Fan Zhang;Fangfang Liang;Tao Wang;Limin Xiao;Xiang Wang;Jianguo Hu
{"title":"基于双种群和突变策略鲸鱼优化算法的有效功率优化方法","authors":"Juncai He;Zhenxue He;Jia Liu;Yan Zhang;Fan Zhang;Fangfang Liang;Tao Wang;Limin Xiao;Xiang Wang;Jianguo Hu","doi":"10.23919/cje.2022.00.358","DOIUrl":null,"url":null,"abstract":"Power is an issue that must be considered in the design of logic circuits. Power optimization is a combinatorial optimization problem, since it is necessary to search for a logical expression that consumes the least amount of power from a large number of Reed-Muller (RM) logical expressions. The existing approach for optimizing the power of multi-output mixed polarity RM (MPRM) logic circuits suffer from poor optimization results. To solve this problem, a whale optimization algorithm with two-populations strategy and mutation strategy (TMWOA) is proposed in this paper. The two-populations strategy speeds up the convergence of the algorithm by exchanging information about the two-populations. The mutation strategy enhances the ability of the algorithm to jump out of the local optimal solutions by using the information of the current optimal solution. Based on the TMWOA, we propose a multi-output MPRM logic circuits power optimization approach (TMMPOA). Experiments based on the benchmark circuits of the Microelectronics Center of North Carolina (MCNC) validate the effectiveness and superiority of the proposed TMMPOA.","PeriodicalId":50701,"journal":{"name":"Chinese Journal of Electronics","volume":"33 2","pages":"423-435"},"PeriodicalIF":1.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10488054","citationCount":"0","resultStr":"{\"title\":\"An Effective Power Optimization Approach Based on Whale Optimization Algorithm with Two-Populations and Mutation Strategies\",\"authors\":\"Juncai He;Zhenxue He;Jia Liu;Yan Zhang;Fan Zhang;Fangfang Liang;Tao Wang;Limin Xiao;Xiang Wang;Jianguo Hu\",\"doi\":\"10.23919/cje.2022.00.358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power is an issue that must be considered in the design of logic circuits. Power optimization is a combinatorial optimization problem, since it is necessary to search for a logical expression that consumes the least amount of power from a large number of Reed-Muller (RM) logical expressions. The existing approach for optimizing the power of multi-output mixed polarity RM (MPRM) logic circuits suffer from poor optimization results. To solve this problem, a whale optimization algorithm with two-populations strategy and mutation strategy (TMWOA) is proposed in this paper. The two-populations strategy speeds up the convergence of the algorithm by exchanging information about the two-populations. The mutation strategy enhances the ability of the algorithm to jump out of the local optimal solutions by using the information of the current optimal solution. Based on the TMWOA, we propose a multi-output MPRM logic circuits power optimization approach (TMMPOA). Experiments based on the benchmark circuits of the Microelectronics Center of North Carolina (MCNC) validate the effectiveness and superiority of the proposed TMMPOA.\",\"PeriodicalId\":50701,\"journal\":{\"name\":\"Chinese Journal of Electronics\",\"volume\":\"33 2\",\"pages\":\"423-435\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10488054\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Electronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10488054/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Electronics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10488054/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

功耗是逻辑电路设计中必须考虑的问题。功耗优化是一个组合优化问题,因为需要从大量里德-穆勒(Reed-Muller,RM)逻辑表达式中寻找功耗最小的逻辑表达式。现有的优化多输出混合极性 RM(MPRM)逻辑电路功耗的方法优化效果不佳。为解决这一问题,本文提出了一种具有双种群策略和突变策略的鲸鱼优化算法(TMWOA)。双种群策略通过交换双种群信息来加快算法的收敛速度。突变策略通过利用当前最优解的信息,增强了算法跳出局部最优解的能力。在 TMWOA 的基础上,我们提出了一种多输出 MPRM 逻辑电路功率优化方法(TMMPOA)。基于北卡罗来纳州微电子中心(MCNC)基准电路的实验验证了所提出的 TMMPOA 的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Effective Power Optimization Approach Based on Whale Optimization Algorithm with Two-Populations and Mutation Strategies
Power is an issue that must be considered in the design of logic circuits. Power optimization is a combinatorial optimization problem, since it is necessary to search for a logical expression that consumes the least amount of power from a large number of Reed-Muller (RM) logical expressions. The existing approach for optimizing the power of multi-output mixed polarity RM (MPRM) logic circuits suffer from poor optimization results. To solve this problem, a whale optimization algorithm with two-populations strategy and mutation strategy (TMWOA) is proposed in this paper. The two-populations strategy speeds up the convergence of the algorithm by exchanging information about the two-populations. The mutation strategy enhances the ability of the algorithm to jump out of the local optimal solutions by using the information of the current optimal solution. Based on the TMWOA, we propose a multi-output MPRM logic circuits power optimization approach (TMMPOA). Experiments based on the benchmark circuits of the Microelectronics Center of North Carolina (MCNC) validate the effectiveness and superiority of the proposed TMMPOA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Journal of Electronics
Chinese Journal of Electronics 工程技术-工程:电子与电气
CiteScore
3.70
自引率
16.70%
发文量
342
审稿时长
12.0 months
期刊介绍: CJE focuses on the emerging fields of electronics, publishing innovative and transformative research papers. Most of the papers published in CJE are from universities and research institutes, presenting their innovative research results. Both theoretical and practical contributions are encouraged, and original research papers reporting novel solutions to the hot topics in electronics are strongly recommended.
期刊最新文献
Front Cover Contents Virtual Coupling Trains Based on Multi-Agent System Under Communication Delay Model Checking Computation Tree Logic Over Multi-Valued Decision Processes and Its Reduction Techniques Subspace Clustering via Block-Diagonal Decomposition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1