Anderson Varela de Andrade, Fernando Sartori Pereira, Fabio Nascimento da Silva, Gustavo Felippe da Silva, Maria de Lourdes Borba Magalhães
{"title":"验证和优化用于快速检测小麦感染病原体--小麦条纹花叶病毒的环介导等温扩增(LAMP)技术","authors":"Anderson Varela de Andrade, Fernando Sartori Pereira, Fabio Nascimento da Silva, Gustavo Felippe da Silva, Maria de Lourdes Borba Magalhães","doi":"10.1016/j.jgeb.2024.100373","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Wheat stripe mosaic virus (WhSMV) is a significant wheat pathogen that causes substantial yield losses in Brazil and other countries. Although several detection methods are available, reliable and efficient tools for on-site WhSMV detection are currently lacking. In this study, a Loop-Mediated Isothermal Amplification (LAMP) method was developed for rapid and reliable field detection of WhSMV. We designed WhSMV-specific primers for the LAMP assay and optimized reaction conditions for increased sensitivity and specificity using infected plant samples.</p></div><div><h3>Results</h3><p>We have developed a diagnostic method utilizing the Loop-Mediated Isothermal Amplification (LAMP) technique capable of rapidly and reliably detecting WhSMV. The LAMP assay has been optimized to enhance sensitivity, specificity, and cost-effectiveness.</p></div><div><h3>Conclusion</h3><p>The LAMP assay described here represents a valuable tool for early WhSMV detection, serving to mitigate the adverse economic and social impacts of this viral pathogen. By enabling swift and accurate identification, this assay can significantly improve the sustainability of cereal production systems, safeguarding crop yields against the detrimental effects of WhSMV.</p></div>","PeriodicalId":53463,"journal":{"name":"Journal of Genetic Engineering and Biotechnology","volume":"22 2","pages":"Article 100373"},"PeriodicalIF":3.5000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1687157X24000763/pdfft?md5=141435332207a36ad1e93620d25c3623&pid=1-s2.0-S1687157X24000763-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Validation and optimization of the loop-mediated isothermal amplification (LAMP) technique for rapid detection of wheat stripe mosaic virus, a wheat-infecting pathogen\",\"authors\":\"Anderson Varela de Andrade, Fernando Sartori Pereira, Fabio Nascimento da Silva, Gustavo Felippe da Silva, Maria de Lourdes Borba Magalhães\",\"doi\":\"10.1016/j.jgeb.2024.100373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Wheat stripe mosaic virus (WhSMV) is a significant wheat pathogen that causes substantial yield losses in Brazil and other countries. Although several detection methods are available, reliable and efficient tools for on-site WhSMV detection are currently lacking. In this study, a Loop-Mediated Isothermal Amplification (LAMP) method was developed for rapid and reliable field detection of WhSMV. We designed WhSMV-specific primers for the LAMP assay and optimized reaction conditions for increased sensitivity and specificity using infected plant samples.</p></div><div><h3>Results</h3><p>We have developed a diagnostic method utilizing the Loop-Mediated Isothermal Amplification (LAMP) technique capable of rapidly and reliably detecting WhSMV. The LAMP assay has been optimized to enhance sensitivity, specificity, and cost-effectiveness.</p></div><div><h3>Conclusion</h3><p>The LAMP assay described here represents a valuable tool for early WhSMV detection, serving to mitigate the adverse economic and social impacts of this viral pathogen. By enabling swift and accurate identification, this assay can significantly improve the sustainability of cereal production systems, safeguarding crop yields against the detrimental effects of WhSMV.</p></div>\",\"PeriodicalId\":53463,\"journal\":{\"name\":\"Journal of Genetic Engineering and Biotechnology\",\"volume\":\"22 2\",\"pages\":\"Article 100373\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1687157X24000763/pdfft?md5=141435332207a36ad1e93620d25c3623&pid=1-s2.0-S1687157X24000763-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Genetic Engineering and Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1687157X24000763\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Genetic Engineering and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1687157X24000763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Validation and optimization of the loop-mediated isothermal amplification (LAMP) technique for rapid detection of wheat stripe mosaic virus, a wheat-infecting pathogen
Background
Wheat stripe mosaic virus (WhSMV) is a significant wheat pathogen that causes substantial yield losses in Brazil and other countries. Although several detection methods are available, reliable and efficient tools for on-site WhSMV detection are currently lacking. In this study, a Loop-Mediated Isothermal Amplification (LAMP) method was developed for rapid and reliable field detection of WhSMV. We designed WhSMV-specific primers for the LAMP assay and optimized reaction conditions for increased sensitivity and specificity using infected plant samples.
Results
We have developed a diagnostic method utilizing the Loop-Mediated Isothermal Amplification (LAMP) technique capable of rapidly and reliably detecting WhSMV. The LAMP assay has been optimized to enhance sensitivity, specificity, and cost-effectiveness.
Conclusion
The LAMP assay described here represents a valuable tool for early WhSMV detection, serving to mitigate the adverse economic and social impacts of this viral pathogen. By enabling swift and accurate identification, this assay can significantly improve the sustainability of cereal production systems, safeguarding crop yields against the detrimental effects of WhSMV.
期刊介绍:
Journal of genetic engineering and biotechnology is devoted to rapid publication of full-length research papers that leads to significant contribution in advancing knowledge in genetic engineering and biotechnology and provide novel perspectives in this research area. JGEB includes all major themes related to genetic engineering and recombinant DNA. The area of interest of JGEB includes but not restricted to: •Plant genetics •Animal genetics •Bacterial enzymes •Agricultural Biotechnology, •Biochemistry, •Biophysics, •Bioinformatics, •Environmental Biotechnology, •Industrial Biotechnology, •Microbial biotechnology, •Medical Biotechnology, •Bioenergy, Biosafety, •Biosecurity, •Bioethics, •GMOS, •Genomic, •Proteomic JGEB accepts