氨基酸手性离子液体的制备及谷氨酰胺和苯丙氨酸对映体的可视手性识别

IF 2.8 4区 化学 Q2 CHEMISTRY, ANALYTICAL Chirality Pub Date : 2024-04-03 DOI:10.1002/chir.23665
Luzheng Dong, Jun Wu, Xiashi Zhu
{"title":"氨基酸手性离子液体的制备及谷氨酰胺和苯丙氨酸对映体的可视手性识别","authors":"Luzheng Dong,&nbsp;Jun Wu,&nbsp;Xiashi Zhu","doi":"10.1002/chir.23665","DOIUrl":null,"url":null,"abstract":"<p>In this paper, the amino acid chiral ionic liquid (AACIL) was prepared with L-phenylalanine and imidazole. It was characterized by CD, FT-IR, <sup>1</sup>H NMR, and <sup>13</sup>C NMR spectrum. The chiral recognition sensor was constructed with AACIL and Cu(II), which exhibited different chiral visual responses (solubility or color difference) to the enantiomers of glutamine (Gln) and phenylalanine (Phe). The effects of solvent, pH, time, temperature, metal ions, and other amino acids on visual chiral recognition were optimized. The minimum concentrations of Gln and Phe for visual chiral recognition were 0.20 mg/ml and 0.28 mg/ml, respectively. The mechanism of chiral recognition was investigated by FT-IR, TEM, SEM, TG, XPS, and CD. The location of the host-guest inclusion or molecular placement has been conformationally searched based on Gaussian 09 software.</p>","PeriodicalId":10170,"journal":{"name":"Chirality","volume":"36 4","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of amino acid chiral ionic liquid and visual chiral recognition of glutamine and phenylalanine enantiomers\",\"authors\":\"Luzheng Dong,&nbsp;Jun Wu,&nbsp;Xiashi Zhu\",\"doi\":\"10.1002/chir.23665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, the amino acid chiral ionic liquid (AACIL) was prepared with L-phenylalanine and imidazole. It was characterized by CD, FT-IR, <sup>1</sup>H NMR, and <sup>13</sup>C NMR spectrum. The chiral recognition sensor was constructed with AACIL and Cu(II), which exhibited different chiral visual responses (solubility or color difference) to the enantiomers of glutamine (Gln) and phenylalanine (Phe). The effects of solvent, pH, time, temperature, metal ions, and other amino acids on visual chiral recognition were optimized. The minimum concentrations of Gln and Phe for visual chiral recognition were 0.20 mg/ml and 0.28 mg/ml, respectively. The mechanism of chiral recognition was investigated by FT-IR, TEM, SEM, TG, XPS, and CD. The location of the host-guest inclusion or molecular placement has been conformationally searched based on Gaussian 09 software.</p>\",\"PeriodicalId\":10170,\"journal\":{\"name\":\"Chirality\",\"volume\":\"36 4\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chirality\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/chir.23665\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chirality","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/chir.23665","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文以 L-苯丙氨酸和咪唑为原料制备了氨基酸手性离子液体(AACIL)。通过 CD、傅立叶变换红外光谱、1H NMR 和 13C NMR 光谱对其进行了表征。用 AACIL 和 Cu(II)构建的手性识别传感器对谷氨酰胺(Gln)和苯丙氨酸(Phe)的对映体表现出不同的手性视觉反应(溶解度或色差)。对溶剂、pH 值、时间、温度、金属离子和其他氨基酸对视觉手性识别的影响进行了优化。视觉手性识别的 Gln 和 Phe 最低浓度分别为 0.20 mg/ml 和 0.28 mg/ml。傅立叶变换红外光谱(FT-IR)、电子显微镜(TEM)、扫描电子显微镜(SEM)、热辐射光谱(TG)、XPS 和 CD 对手性识别的机理进行了研究。利用高斯 09 软件对主-客体包含或分子位置进行了构象搜索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preparation of amino acid chiral ionic liquid and visual chiral recognition of glutamine and phenylalanine enantiomers

In this paper, the amino acid chiral ionic liquid (AACIL) was prepared with L-phenylalanine and imidazole. It was characterized by CD, FT-IR, 1H NMR, and 13C NMR spectrum. The chiral recognition sensor was constructed with AACIL and Cu(II), which exhibited different chiral visual responses (solubility or color difference) to the enantiomers of glutamine (Gln) and phenylalanine (Phe). The effects of solvent, pH, time, temperature, metal ions, and other amino acids on visual chiral recognition were optimized. The minimum concentrations of Gln and Phe for visual chiral recognition were 0.20 mg/ml and 0.28 mg/ml, respectively. The mechanism of chiral recognition was investigated by FT-IR, TEM, SEM, TG, XPS, and CD. The location of the host-guest inclusion or molecular placement has been conformationally searched based on Gaussian 09 software.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chirality
Chirality 医学-分析化学
CiteScore
4.40
自引率
5.00%
发文量
124
审稿时长
1 months
期刊介绍: The main aim of the journal is to publish original contributions of scientific work on the role of chirality in chemistry and biochemistry in respect to biological, chemical, materials, pharmacological, spectroscopic and physical properties. Papers on the chemistry (physiochemical, preparative synthetic, and analytical), physics, pharmacology, clinical pharmacology, toxicology, and other biological aspects of chiral molecules will be published.
期刊最新文献
Chiral Differentiation of Chiral Lactides and Chiral Diketones on Native and Phenylcarbamoylated Cyclodextrin Chiral Stationary Phases. Multiwavelength Optical Rotation Detection: An Effective Approach for the Recognition of Analytical and Semi-Preparative HPLC Enantioseparation of the Chiral Pheromone Olean and Its Stereochemical Characterization Emergence of Optical Activity and Surface Morphology Changes in Racemic Amino Acid Films Under Circularly Polarized Lyman-α Light Irradiation Proceedings From 33rd Symposium on Chirality 2023, Rome, Italy Resolution and Absolute Configuration of Fargesin Enantiomers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1