FinTDA:通过持久同构图估算市场变化的 Python 软件包

IF 1.3 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Software Impacts Pub Date : 2024-03-28 DOI:10.1016/j.simpa.2024.100637
Hugo Gobato Souto , Ismail Baris , Storm Koert Heuvel , Amir Moradi
{"title":"FinTDA:通过持久同构图估算市场变化的 Python 软件包","authors":"Hugo Gobato Souto ,&nbsp;Ismail Baris ,&nbsp;Storm Koert Heuvel ,&nbsp;Amir Moradi","doi":"10.1016/j.simpa.2024.100637","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a user-friendly version of Persistent Homology (PH) graph code to model financial market structures and changes. By leveraging Topological Data Analysis (TDA), the code offers an effective approach for analyzing high-dimensional stock data, enabling the identification of persistent topological features indicative of market changes. The code’s potential applications in financial stability prediction, investment strategy development, and educational advancement are discussed. This contribution aims to facilitate the adoption of PH techniques in finance, promising significant implications for academic research and practical market analysis.</p></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"20 ","pages":"Article 100637"},"PeriodicalIF":1.3000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665963824000253/pdfft?md5=b5e5b1e3f98db2a5510af1445206fc0c&pid=1-s2.0-S2665963824000253-main.pdf","citationCount":"0","resultStr":"{\"title\":\"FinTDA: Python package for estimating market change through persistent homology diagrams\",\"authors\":\"Hugo Gobato Souto ,&nbsp;Ismail Baris ,&nbsp;Storm Koert Heuvel ,&nbsp;Amir Moradi\",\"doi\":\"10.1016/j.simpa.2024.100637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents a user-friendly version of Persistent Homology (PH) graph code to model financial market structures and changes. By leveraging Topological Data Analysis (TDA), the code offers an effective approach for analyzing high-dimensional stock data, enabling the identification of persistent topological features indicative of market changes. The code’s potential applications in financial stability prediction, investment strategy development, and educational advancement are discussed. This contribution aims to facilitate the adoption of PH techniques in finance, promising significant implications for academic research and practical market analysis.</p></div>\",\"PeriodicalId\":29771,\"journal\":{\"name\":\"Software Impacts\",\"volume\":\"20 \",\"pages\":\"Article 100637\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2665963824000253/pdfft?md5=b5e5b1e3f98db2a5510af1445206fc0c&pid=1-s2.0-S2665963824000253-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Software Impacts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2665963824000253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Impacts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665963824000253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种用户友好型持久同构(PH)图代码,用于模拟金融市场结构和变化。通过利用拓扑数据分析(TDA),该代码提供了一种分析高维股票数据的有效方法,能够识别表明市场变化的持久拓扑特征。本文讨论了该代码在金融稳定性预测、投资策略开发和教育进步方面的潜在应用。这项贡献旨在促进 PH 技术在金融领域的应用,有望对学术研究和实际市场分析产生重大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FinTDA: Python package for estimating market change through persistent homology diagrams

This paper presents a user-friendly version of Persistent Homology (PH) graph code to model financial market structures and changes. By leveraging Topological Data Analysis (TDA), the code offers an effective approach for analyzing high-dimensional stock data, enabling the identification of persistent topological features indicative of market changes. The code’s potential applications in financial stability prediction, investment strategy development, and educational advancement are discussed. This contribution aims to facilitate the adoption of PH techniques in finance, promising significant implications for academic research and practical market analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Software Impacts
Software Impacts Software
CiteScore
2.70
自引率
9.50%
发文量
0
审稿时长
16 days
期刊最新文献
mGFD: CloudGenerator SlabCutOpt: A code for ornamental stone slab cut optimization LandSin: A differential ML and google API-enabled web server for real-time land insights and beyond EnhancedBERT: A python software tailored for arabic word sense disambiguation PostgreSQL: Relational database structures application on capacitated lot-sizing for pharmaceutical tablets manufacturing processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1