{"title":"任意开关下开关式异步连续机器的输入/输出纠正控制","authors":"Jung-Min Yang , Seong Woo Kwak","doi":"10.1016/j.nahs.2024.101489","DOIUrl":null,"url":null,"abstract":"<div><p>This article presents a novel modeling and corrective control of switched asynchronous sequential machines (ASMs) with input/output submachines. In particular, the considered switched ASM is harnessed by the external switching signal that provokes arbitrary change of the mode or submachine. The existence of the external switching signal imposes unpredictable state drift opposite to model matching as well as ambiguity in determining the active submachine. We first present a state observer for state observation and identification of the active submachine. Based on the information delivered by the observer, we address the existence condition and design procedure for a corrective controller that matches the stable-state behavior of the closed-loop system to that of a reference model for every possible switching sequence. To demonstrate the validity and applicability of the proposed control scheme, we conduct hardware experiments on field-programmable gate array (FPGA) circuits for a space-borne digital system and provide convincing experimental results.</p></div>","PeriodicalId":49011,"journal":{"name":"Nonlinear Analysis-Hybrid Systems","volume":"53 ","pages":"Article 101489"},"PeriodicalIF":3.7000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Input/output corrective control of switched asynchronous sequential machines under arbitrary switching\",\"authors\":\"Jung-Min Yang , Seong Woo Kwak\",\"doi\":\"10.1016/j.nahs.2024.101489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This article presents a novel modeling and corrective control of switched asynchronous sequential machines (ASMs) with input/output submachines. In particular, the considered switched ASM is harnessed by the external switching signal that provokes arbitrary change of the mode or submachine. The existence of the external switching signal imposes unpredictable state drift opposite to model matching as well as ambiguity in determining the active submachine. We first present a state observer for state observation and identification of the active submachine. Based on the information delivered by the observer, we address the existence condition and design procedure for a corrective controller that matches the stable-state behavior of the closed-loop system to that of a reference model for every possible switching sequence. To demonstrate the validity and applicability of the proposed control scheme, we conduct hardware experiments on field-programmable gate array (FPGA) circuits for a space-borne digital system and provide convincing experimental results.</p></div>\",\"PeriodicalId\":49011,\"journal\":{\"name\":\"Nonlinear Analysis-Hybrid Systems\",\"volume\":\"53 \",\"pages\":\"Article 101489\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Hybrid Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1751570X24000268\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Hybrid Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751570X24000268","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Input/output corrective control of switched asynchronous sequential machines under arbitrary switching
This article presents a novel modeling and corrective control of switched asynchronous sequential machines (ASMs) with input/output submachines. In particular, the considered switched ASM is harnessed by the external switching signal that provokes arbitrary change of the mode or submachine. The existence of the external switching signal imposes unpredictable state drift opposite to model matching as well as ambiguity in determining the active submachine. We first present a state observer for state observation and identification of the active submachine. Based on the information delivered by the observer, we address the existence condition and design procedure for a corrective controller that matches the stable-state behavior of the closed-loop system to that of a reference model for every possible switching sequence. To demonstrate the validity and applicability of the proposed control scheme, we conduct hardware experiments on field-programmable gate array (FPGA) circuits for a space-borne digital system and provide convincing experimental results.
期刊介绍:
Nonlinear Analysis: Hybrid Systems welcomes all important research and expository papers in any discipline. Papers that are principally concerned with the theory of hybrid systems should contain significant results indicating relevant applications. Papers that emphasize applications should consist of important real world models and illuminating techniques. Papers that interrelate various aspects of hybrid systems will be most welcome.