STING 构象转变的计算见解:机理、能量考虑以及关键突变的影响

IF 2.7 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Journal of molecular graphics & modelling Pub Date : 2024-04-02 DOI:10.1016/j.jmgm.2024.108764
Zhenlu Li , Congran Yue , Shangqiang Xie , Sai Shi , Sheng Ye
{"title":"STING 构象转变的计算见解:机理、能量考虑以及关键突变的影响","authors":"Zhenlu Li ,&nbsp;Congran Yue ,&nbsp;Shangqiang Xie ,&nbsp;Sai Shi ,&nbsp;Sheng Ye","doi":"10.1016/j.jmgm.2024.108764","DOIUrl":null,"url":null,"abstract":"<div><p>STING (stimulator of interferon genes) is a crucial protein in the innate immune system's response to viral and bacterial infections. In this study, we investigated the mechanistic and energetic mechanism of the conformational transition process of STING activated by cGAMP binding. We found that the STING connector region undergoes an energetically unfavorable rotation during this process, which is compensated by the favorable interaction between cGAMP and the STING ligand binding domain. We further studied several disease-causing mutations and found that the V155 M mutation facilitates a smoother transition in the STING connector region. However, the V147L mutation exhibits unfavorable conformational transition energy, suggesting it may hinder STING activation pathway that relies on connector region rotation. Despite being labeled as hyperactive, the widespread prevalence of V147L/V147I mutations across species implies a neutral character, indicating complexity in its role. Overall, our analysis deepens the understanding of STING activation within the connector region, and targeting this region with compounds may provide an alternative approach to interfering with STING's function.</p></div>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational insights into the conformational transition of STING: Mechanistic, energetic considerations, and the influence of crucial mutations\",\"authors\":\"Zhenlu Li ,&nbsp;Congran Yue ,&nbsp;Shangqiang Xie ,&nbsp;Sai Shi ,&nbsp;Sheng Ye\",\"doi\":\"10.1016/j.jmgm.2024.108764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>STING (stimulator of interferon genes) is a crucial protein in the innate immune system's response to viral and bacterial infections. In this study, we investigated the mechanistic and energetic mechanism of the conformational transition process of STING activated by cGAMP binding. We found that the STING connector region undergoes an energetically unfavorable rotation during this process, which is compensated by the favorable interaction between cGAMP and the STING ligand binding domain. We further studied several disease-causing mutations and found that the V155 M mutation facilitates a smoother transition in the STING connector region. However, the V147L mutation exhibits unfavorable conformational transition energy, suggesting it may hinder STING activation pathway that relies on connector region rotation. Despite being labeled as hyperactive, the widespread prevalence of V147L/V147I mutations across species implies a neutral character, indicating complexity in its role. Overall, our analysis deepens the understanding of STING activation within the connector region, and targeting this region with compounds may provide an alternative approach to interfering with STING's function.</p></div>\",\"PeriodicalId\":16361,\"journal\":{\"name\":\"Journal of molecular graphics & modelling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of molecular graphics & modelling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1093326324000640\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular graphics & modelling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1093326324000640","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

STING(干扰素基因刺激因子)是先天性免疫系统对病毒和细菌感染做出反应的关键蛋白。在这项研究中,我们研究了 STING 被 cGAMP 结合激活的构象转变过程的机理和能量机制。我们发现,在这一过程中,STING 连接区发生了能量上不利的旋转,而 cGAMP 与 STING 配体结合域之间的有利相互作用补偿了这一旋转。我们进一步研究了几种致病突变,发现 V155 M 突变有利于 STING 连接区的平滑过渡。然而,V147L 突变则表现出不利的构象转换能量,这表明它可能会阻碍 STING 依赖于连接区旋转的激活途径。尽管V147L/V147I突变被贴上了 "超活性 "的标签,但它在不同物种中的广泛流行意味着它具有中性特征,这表明它的作用具有复杂性。总之,我们的分析加深了人们对接头区内 STING 激活的理解,针对该区域的化合物可能是干扰 STING 功能的另一种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computational insights into the conformational transition of STING: Mechanistic, energetic considerations, and the influence of crucial mutations

STING (stimulator of interferon genes) is a crucial protein in the innate immune system's response to viral and bacterial infections. In this study, we investigated the mechanistic and energetic mechanism of the conformational transition process of STING activated by cGAMP binding. We found that the STING connector region undergoes an energetically unfavorable rotation during this process, which is compensated by the favorable interaction between cGAMP and the STING ligand binding domain. We further studied several disease-causing mutations and found that the V155 M mutation facilitates a smoother transition in the STING connector region. However, the V147L mutation exhibits unfavorable conformational transition energy, suggesting it may hinder STING activation pathway that relies on connector region rotation. Despite being labeled as hyperactive, the widespread prevalence of V147L/V147I mutations across species implies a neutral character, indicating complexity in its role. Overall, our analysis deepens the understanding of STING activation within the connector region, and targeting this region with compounds may provide an alternative approach to interfering with STING's function.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of molecular graphics & modelling
Journal of molecular graphics & modelling 生物-计算机:跨学科应用
CiteScore
5.50
自引率
6.90%
发文量
216
审稿时长
35 days
期刊介绍: The Journal of Molecular Graphics and Modelling is devoted to the publication of papers on the uses of computers in theoretical investigations of molecular structure, function, interaction, and design. The scope of the journal includes all aspects of molecular modeling and computational chemistry, including, for instance, the study of molecular shape and properties, molecular simulations, protein and polymer engineering, drug design, materials design, structure-activity and structure-property relationships, database mining, and compound library design. As a primary research journal, JMGM seeks to bring new knowledge to the attention of our readers. As such, submissions to the journal need to not only report results, but must draw conclusions and explore implications of the work presented. Authors are strongly encouraged to bear this in mind when preparing manuscripts. Routine applications of standard modelling approaches, providing only very limited new scientific insight, will not meet our criteria for publication. Reproducibility of reported calculations is an important issue. Wherever possible, we urge authors to enhance their papers with Supplementary Data, for example, in QSAR studies machine-readable versions of molecular datasets or in the development of new force-field parameters versions of the topology and force field parameter files. Routine applications of existing methods that do not lead to genuinely new insight will not be considered.
期刊最新文献
Editorial Board Engineering affinity of humanized ScFv targeting CD147 antibody: A combined approach of mCSM-AB2 and molecular dynamics simulations How a mixture of microRNA-29a (miR-29a) and microRNA-144 (miR-144) cancer biomarkers interacts with a graphene quantum dot Unwinding DNA strands by single-walled carbon nanotubes: Molecular docking and MD simulation approach Insights into the binding recognition and computational design of IL-2 muteins with enhanced predicted binding affinity to the IL-2 receptor α
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1