{"title":"带渗透层的边缘礁次重力波流体力学数值研究","authors":"K. Qu, X. Wang, Y. Yao, J. Men, R.Z. Gao","doi":"10.1016/j.csr.2024.105212","DOIUrl":null,"url":null,"abstract":"<div><p>In tropical and subtropical coastal regions, coral reefs are abundant and play a vital role in maintaining ecosystem balance. Additionally, they effectively dissipate a significant amount of wave energy that propagates from the open sea towards the coastline, providing coastal areas with protection against wave impacts. Consequently, numerous scholars have conducted extensive research to investigate the hydrodynamic characteristics of wave propagation and transformation over coral reef topography. However, previous studies have often simplified the bottom boundary of coral reefs as impermeable layers, neglecting the fact that the coral reef consists of a permeable canopy structure in the actual marine environment. To fill the knowledge gap of previous research, this study is based on the Non-Hydrostatic Wave Model Solver (NHWAVE) to numerically simulate the propagation process of random waves over permeable coral fringing reefs. The study takes a comprehensive approach by considering the influences of various factors on the hydrodynamic characteristics of random waves over the fringing reef, including incident wave height, reef-flat water depth, peak wave period, permeable layer thickness, permeable layer porosity, and median diameter of the permeable layer. This paper focuses primarily on analyzing the variations in sea-swell wave height (<span><math><mrow><msub><mi>H</mi><mrow><mi>S</mi><mi>S</mi></mrow></msub></mrow></math></span>), infragravity wave height (<span><math><mrow><msub><mi>H</mi><mrow><mi>I</mi><mi>G</mi></mrow></msub></mrow></math></span>), and mean water level (<span><math><mrow><mi>M</mi><mi>W</mi><mi>L</mi></mrow></math></span>) along the fringing reef, while conducting a comparative analysis between fringing reefs with a permeable layer and impermeable fringing reefs. The findings reveal that the presence of a permeable layer reduces the shallow water deformation of waves on the fore-reef slope and mitigates the wave-breaking phenomenon near the reef edge, thereby significantly reducing the sea-swell wave height (<span><math><mrow><msub><mi>H</mi><mrow><mi>S</mi><mi>S</mi></mrow></msub></mrow></math></span>), infragravity wave height (<span><math><mrow><msub><mi>H</mi><mrow><mi>I</mi><mi>G</mi></mrow></msub></mrow></math></span>), and wave setup on the reef-flat. Furthermore, the permeable layer's existence also leads to a decrease in the maximum wave run-up height on the back-reef slope. The research findings of this study can further enhance our understanding of the hydrodynamic characteristics of infragravity waves over fringing reefs, which is significant for studying the impact of random waves on coastal areas and understanding the protective mechanisms of coral reefs in coastal regions.</p></div>","PeriodicalId":50618,"journal":{"name":"Continental Shelf Research","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical investigation of infragravity wave hydrodynamics at fringing reef with a permeable layer\",\"authors\":\"K. Qu, X. Wang, Y. Yao, J. Men, R.Z. Gao\",\"doi\":\"10.1016/j.csr.2024.105212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In tropical and subtropical coastal regions, coral reefs are abundant and play a vital role in maintaining ecosystem balance. Additionally, they effectively dissipate a significant amount of wave energy that propagates from the open sea towards the coastline, providing coastal areas with protection against wave impacts. Consequently, numerous scholars have conducted extensive research to investigate the hydrodynamic characteristics of wave propagation and transformation over coral reef topography. However, previous studies have often simplified the bottom boundary of coral reefs as impermeable layers, neglecting the fact that the coral reef consists of a permeable canopy structure in the actual marine environment. To fill the knowledge gap of previous research, this study is based on the Non-Hydrostatic Wave Model Solver (NHWAVE) to numerically simulate the propagation process of random waves over permeable coral fringing reefs. The study takes a comprehensive approach by considering the influences of various factors on the hydrodynamic characteristics of random waves over the fringing reef, including incident wave height, reef-flat water depth, peak wave period, permeable layer thickness, permeable layer porosity, and median diameter of the permeable layer. This paper focuses primarily on analyzing the variations in sea-swell wave height (<span><math><mrow><msub><mi>H</mi><mrow><mi>S</mi><mi>S</mi></mrow></msub></mrow></math></span>), infragravity wave height (<span><math><mrow><msub><mi>H</mi><mrow><mi>I</mi><mi>G</mi></mrow></msub></mrow></math></span>), and mean water level (<span><math><mrow><mi>M</mi><mi>W</mi><mi>L</mi></mrow></math></span>) along the fringing reef, while conducting a comparative analysis between fringing reefs with a permeable layer and impermeable fringing reefs. The findings reveal that the presence of a permeable layer reduces the shallow water deformation of waves on the fore-reef slope and mitigates the wave-breaking phenomenon near the reef edge, thereby significantly reducing the sea-swell wave height (<span><math><mrow><msub><mi>H</mi><mrow><mi>S</mi><mi>S</mi></mrow></msub></mrow></math></span>), infragravity wave height (<span><math><mrow><msub><mi>H</mi><mrow><mi>I</mi><mi>G</mi></mrow></msub></mrow></math></span>), and wave setup on the reef-flat. Furthermore, the permeable layer's existence also leads to a decrease in the maximum wave run-up height on the back-reef slope. The research findings of this study can further enhance our understanding of the hydrodynamic characteristics of infragravity waves over fringing reefs, which is significant for studying the impact of random waves on coastal areas and understanding the protective mechanisms of coral reefs in coastal regions.</p></div>\",\"PeriodicalId\":50618,\"journal\":{\"name\":\"Continental Shelf Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Continental Shelf Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0278434324000426\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Continental Shelf Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278434324000426","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
Numerical investigation of infragravity wave hydrodynamics at fringing reef with a permeable layer
In tropical and subtropical coastal regions, coral reefs are abundant and play a vital role in maintaining ecosystem balance. Additionally, they effectively dissipate a significant amount of wave energy that propagates from the open sea towards the coastline, providing coastal areas with protection against wave impacts. Consequently, numerous scholars have conducted extensive research to investigate the hydrodynamic characteristics of wave propagation and transformation over coral reef topography. However, previous studies have often simplified the bottom boundary of coral reefs as impermeable layers, neglecting the fact that the coral reef consists of a permeable canopy structure in the actual marine environment. To fill the knowledge gap of previous research, this study is based on the Non-Hydrostatic Wave Model Solver (NHWAVE) to numerically simulate the propagation process of random waves over permeable coral fringing reefs. The study takes a comprehensive approach by considering the influences of various factors on the hydrodynamic characteristics of random waves over the fringing reef, including incident wave height, reef-flat water depth, peak wave period, permeable layer thickness, permeable layer porosity, and median diameter of the permeable layer. This paper focuses primarily on analyzing the variations in sea-swell wave height (), infragravity wave height (), and mean water level () along the fringing reef, while conducting a comparative analysis between fringing reefs with a permeable layer and impermeable fringing reefs. The findings reveal that the presence of a permeable layer reduces the shallow water deformation of waves on the fore-reef slope and mitigates the wave-breaking phenomenon near the reef edge, thereby significantly reducing the sea-swell wave height (), infragravity wave height (), and wave setup on the reef-flat. Furthermore, the permeable layer's existence also leads to a decrease in the maximum wave run-up height on the back-reef slope. The research findings of this study can further enhance our understanding of the hydrodynamic characteristics of infragravity waves over fringing reefs, which is significant for studying the impact of random waves on coastal areas and understanding the protective mechanisms of coral reefs in coastal regions.
期刊介绍:
Continental Shelf Research publishes articles dealing with the biological, chemical, geological and physical oceanography of the shallow marine environment, from coastal and estuarine waters out to the shelf break. The continental shelf is a critical environment within the land-ocean continuum, and many processes, functions and problems in the continental shelf are driven by terrestrial inputs transported through the rivers and estuaries to the coastal and continental shelf areas. Manuscripts that deal with these topics must make a clear link to the continental shelf. Examples of research areas include:
Physical sedimentology and geomorphology
Geochemistry of the coastal ocean (inorganic and organic)
Marine environment and anthropogenic effects
Interaction of physical dynamics with natural and manmade shoreline features
Benthic, phytoplankton and zooplankton ecology
Coastal water and sediment quality, and ecosystem health
Benthic-pelagic coupling (physical and biogeochemical)
Interactions between physical dynamics (waves, currents, mixing, etc.) and biogeochemical cycles
Estuarine, coastal and shelf sea modelling and process studies.